Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 172: 116233, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308971

RESUMO

Acute lung injury (ALI) is characterized by pulmonary diffusion abnormalities that may progress to multiple-organ failure in severe cases. There are limited effective treatments for ALI, which makes the search for new therapeutic avenues critically important. Macrophages play a pivotal role in the pathogenesis of ALI. The degree of macrophage polarization is closely related to the severity and prognosis of ALI, and S100A9 promotes M1 polarization of macrophages. The present study assessed the effects of S100A9-gene deficiency on macrophage polarization and acute lung injury. Our cohort study showed that plasma S100A8/A9 levels had significant diagnostic value for pediatric pneumonia and primarily correlated with monocyte-macrophages and neutrophils. We established a lipopolysaccharide (LPS)-induced mouse model of acute lung injury and demonstrated that knockout of the S100A9 gene mitigated inflammation by suppressing the secretion of pro-inflammatory cytokines, reducing the number of inflammatory cells in the bronchoalveolar lavage fluid, and inhibiting cell apoptosis, which ameliorated acute lung injury in mice. The in vitro and in vivo mechanistic studies demonstrated that S100A9-gene deficiency inhibited macrophage M1 polarization and reduced the levels of pulmonary macrophage chemotactic factors and inflammatory cytokines by suppressing the TLR4/MyD88/NF-κB signaling pathway and reversing the expression of the NLRP3 pyroptosis pathway, which reduced cell death. In conclusion, S100A9-gene deficiency alleviated LPS-induced acute lung injury by inhibiting macrophage M1 polarization and pyroptosis via the TLR4/MyD88/NFκB pathway, which suggests a potential therapeutic strategy for the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Humanos , Criança , Camundongos , Animais , Lipopolissacarídeos/efeitos adversos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Piroptose , Estudos de Coortes , Transdução de Sinais , Lesão Pulmonar Aguda/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo
2.
Ecotoxicol Environ Saf ; 243: 113973, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988382

RESUMO

Organophosphate flame retardants (OPFRs) are increasingly and widely used as substitutes for brominated flame retardants in daily life. The chemical structure of OPFRs is very similar to that of organophosphorus pesticides, leading to concerns about their neurotoxicity. A few epidemiological studies have been published with inconsistent results on this topic, and a systematic scoping review is needed to provide an overview or map of the current evidence on the relationship of OPFRs with neurodevelopmental toxicity. Therefore, MEDLINE (accessed through PubMed), Web of Science, and CNKI (Chinese National Knowledge Infrastructure) were systematically searched for articles published in the last two decades. Nine eligible articles were included in the present systematic scoping review for adherence to the predefined PECOS (population, exposure, comparison, outcome, study design) statement. Six studies were conducted in the USA, and the remaining three studies were conducted in Austria, Norway and China. A total of 2 581 children (1 203 females and 1 378 males) were included. Half of the included studies focused on the adverse effects of OPFR exposure on cognition in children, while others primarily focused on the behaviors of children. In summary, the current evidence suggests inverse associations between early-life exposure to OPFRs and the childhood intelligence quotient and internalizing behavior and positive relationships of OPFR exposure with externalizing behavior. However, some differences in the timing of sample collection for exposure measurements, in the individual OPFR metabolites available, in the neurodevelopmental scales for outcome measurement, and in the statistical methods used to analyze the data are noted. In addition, further studies are warranted to evaluate some important issues, such as sex differences in the association, exposure-sensitive periods, and cumulative exposure risk assessment.


Assuntos
Retardadores de Chama , Praguicidas , Criança , Estudos Epidemiológicos , Feminino , Retardadores de Chama/toxicidade , Humanos , Masculino , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade
3.
ChemSusChem ; 15(14): e202200522, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35438240

RESUMO

Plastics are playing essential roles in the modern society. The majority of them enter environment through landfilling or discarding after turning into wastes, causing severe carbon loss and imposing high risk to ecosystem and human health. Currently, physical recycling serves as the primary method to reuse plastic waste, but this method is limited to thermoplastic recycling. The quality of recycled plastics gradually deteriorates because of the undesirable degradation in the recycling process. Under such background, catalytic upcycling, which can upgrade various plastic wastes into value-added products under mild conditions, has attracted recent attention as a promising strategy to treat plastic wastes. This Review highlights recent advances in the development of efficient heterogeneous catalysts and useful strategies for upcycling plastics into liquid hydrocarbons, arene compounds, carbon materials, hydrogen, and other value-added chemicals. The functions of catalysts and the reaction mechanisms are discussed. The key factors that influence the catalytic performance are also analyzed.


Assuntos
Ecossistema , Plásticos , Carbono , Catálise , Humanos , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...