Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 70(48): 15104-15115, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36414003

RESUMO

18ß-Glycyrrhetinic acid (GA) is a triterpenoid possessing an anti-inflammatory activity in vivo, while the low bioavailability limits its application due to its intestinal accumulation. In order to investigate the metabolism of GA in intestinal microbes, it was incubated with human intestinal fungus Aspergillus niger RG13B1, finally leading to the isolation and identification of three new metabolites (1-3) and three known metabolites (4-6) based on 1D and 2D NMR and high-resolution electrospray ionization mass spectroscopy spectra. Metabolite 6 could target myeloid differentiation protein 2 (MD2) to suppress the activation of nuclear factor-kappa B (NF-κB) signaling pathway via inhibiting the nuclear translocation of p65 to downregulate its target proteins and genes in lipopolysaccharide (LPS)-mediated RAW264.7 cells. Molecular dynamics suggested that metabolite 6 interacted with MD2 through the hydrogen bond of amino acid residue Arg90. These findings demonstrated that metabolite 6 could serve as a potential candidate to develop the new inhibitors of MD2.


Assuntos
Anti-Inflamatórios , Aspergillus niger , Humanos , Aspergillus niger/genética , Anti-Inflamatórios/farmacologia
2.
Sci Total Environ ; 822: 153585, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35121040

RESUMO

Dimethomorph (DMM), an effective and broad-spectrum fungicide applied in agriculture, is toxic to environments and living organisms due to the hazardous nature of its toxic residues. This study aims to investigate the human cytochrome P450 enzyme (CYP)-mediated oxidative metabolism of DMM by combining experimental and computational approaches. Dimethomorph was metabolized predominantly through a two-step oxidation process mediated by CYPs, and CYP3A was identified as the major contributor to DMM sequential oxidative metabolism. Meanwhile, DMM elicited the mechanism-based inactivation (MBI) of CYP3A in a suicide manner, and the iminium ion and epoxide reactive intermediates generated in DMM metabolism were identified as the culprits of MBI. Furthermore, three common pesticides, prochloraz (PCZ), difenoconazole (DFZ) and chlorothalonil (CTL), could significantly inhibit CYP3A-mediated DMM metabolism, and consequently trigger elevated exposure to DMM in vivo. Computational studies elucidated that the differentiation effects in charge distribution and the interaction pattern played crucial roles in DMM-induced MBI of CYP3A4 during sequential oxidative metabolism. Collectively, this study provided a global view of the two-step metabolic activation process of DMM mediated by CYP3A, which was beneficial for elucidating the environmental fate and toxicological mechanism of DMM in humans from a new perspective.


Assuntos
Citocromo P-450 CYP3A , Morfolinas , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Morfolinas/metabolismo , Oxirredução
3.
Phytochemistry ; 193: 112974, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34653908

RESUMO

Intestinal commensal fungi are vital to human health, and their metabolites play a key role in the reciprocal relationship. In the present work, eighteen alkaloids and seven monoterpenoids were isolated from the fermentation of the human intestinal fungus Penicillium oxalicum SL2, including seven undescribed alkaloids (penicilloxalines A-G), three undescribed monoterpenoids (penicilloxalines H-J), and fifteen reported compounds. The structures of the isolated compounds were identified by HRESIMS, 1D and 2D NMR, electronic circular dichroism spectra and quantum chemical calculations. Some metabolites displayed moderate agonistic effects against the pregnane X receptor (PXR), whereas (6R)3,7-dimethyl-6,7-dihydroxy-2(Z)-octenoic acid displayed a significant agonistic effect against the farnesoid X receptor (FXR) with an EC50 value of 0.43 µM, which was verified by investigating FXR downstream target genes and proteins, such as small heterodimer partner 1 (SHP1), fibroblast growth factor (FGF), and bile salt export pump (BSEP).


Assuntos
Penicillium , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares , Humanos , Intestinos
4.
Fitoterapia ; 155: 105054, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34626737

RESUMO

ß-Carboline alkaloid harmaline (HA) is a candidate drug molecule that has been proven to have broad and significant biological activity. Herein, the effects of HA on the riboflavin (RF)-sensitized photooxidation under aerobic conditions were studied for the first time. The photooxidation reaction of HA catalyzed by RF is triggered by UV light at 365 nm and shows a time-dependent stepwise reaction process. Seven transformed products, including five undescribed compounds, oxoharmalines A-E (1-4 and 7), and two known compounds, N-(2-(6-Methoxy-2-oxoindolin-3-yl)ethyl)acetamide (5) and harmine (6), were isolated and identified from the reaction system, following as the gradual oxidation mechanisms. The rare polymerization and dehydrogenation processes in radical-mediated photocatalytic reactions were involved in the process. The transformed products 2-7 exhibited significant neuroprotective activity in a model of H2O2-introduced injury in SH-SY5Y cells, which suggested that the products of the interaction between HA and vitamins may be beneficial to health.


Assuntos
Harmalina/farmacologia , Fármacos Neuroprotetores/farmacologia , Riboflavina/metabolismo , Carbolinas , Linhagem Celular Tumoral , Harmina , Humanos , Estrutura Molecular , Oxirredução , Raios Ultravioleta
5.
Int J Biol Macromol ; 183: 811-817, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33957203

RESUMO

Inhibition of soluble epoxide hydrolase (sEH) is considered to be an effective treatment for inflammation-related diseases, and small molecules origin from natural products show promising activity against sEH. Two undescribed protostanes, 3ß-hydroxy-25-anhydro-alisol F (1) and 3ß-hydroxy-alisol G (2) were isolated from Alisma orientale and identified as new sEH inhibitors with IC50 values of 10.06 and 30.45 µM, respectively. Potential lead compound 1 was determined as an uncompetitive inhibitor against sEH, which had a Ki value of 5.13 µM. In-depth molecular docking and molecular dynamics simulations revealed that amino acid residue Ser374 plays an important role in the inhibition of 1, which also provides an idea for the development of sEH inhibitors based on protostane-type triterpenoids.


Assuntos
Alisma/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Triterpenos/farmacologia , Inibidores Enzimáticos/química , Epóxido Hidrolases/química , Concentração Inibidora 50 , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Farmacocinética , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Conformação Proteica , Triterpenos/química
6.
Am J Chin Med ; 49(2): 315-358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622212

RESUMO

As a genus of the Asteraceae, Inula is widely distributed all over the world, and several of them are being used in traditional medicines. A number of metabolites were isolated from Inula species, and some of these have shown to possess ranges of pharmacological activities. The genus Inula contains abundant sesquiterpenoids, such as eudesmanes, xanthanes, and sesquiterpenoid dimers and trimers. In addition, other types of terpenoids, flavonoids, and lignins also exist in the genus Inula. Since 2010, more than 300 new secondary metabolites, including several known natural products that were isolated for the first time from the genus Inula. Most of them exhibited potential bioactivities in various diseases. The review aimed to summarize the advance of recent researches (2010-2020) on phytochemical constituents, biosynthesis, and pharmacological properties of the genus Inula for providing a scientific basis and supporting its application and exploitation for new drug development.


Assuntos
Inula/química , Extratos Vegetais , Desenvolvimento de Medicamentos , Humanos , Estrutura Molecular , Extratos Vegetais/biossíntese , Extratos Vegetais/química , Extratos Vegetais/farmacologia
7.
J Mater Chem B ; 9(10): 2457-2461, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33630990

RESUMO

Carboxylesterase 2 (CES 2) is a key enzyme in the activation of the prodrug irinotecan (CPT-11) in the treatment against colorectal cancer and also has some relationship with the side effect of CPT-11 in clinical applications. Herein, a near infrared (NIR) fluorescent probe (DSAB) has been designed for CES 2 which possesses the advantages of prominent selectivity and high sensitivity, and DSAB has been successfully applied for the imaging of endogenous CES 2 in living cells. Moreover, a high-throughput screening method for CES 2 inhibitors has been established using DSAB and discovered four novel CES 2 inhibitors from various herbal medicines. These results fully demonstrated that DSAB is a promising molecular tool for the investigation of the biological functions of CES 2 in living systems and the discovery of novel CES 2 inhibitors for the treatment of CES 2 related physiological diseases.


Assuntos
Carboxilesterase/química , Carboxilesterase/metabolismo , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/química , Raios Infravermelhos , Carboxilesterase/antagonistas & inibidores , Linhagem Celular , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Limite de Detecção
8.
Phytother Res ; 35(4): 1872-1886, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33184919

RESUMO

The genus Alisma contains 11 species distributed worldwide, of which at least two species (A. orientale [Sam.] Juzep. and A. plantago-aquatica Linn.) have been used as common herbal medicines. Secondary metabolites obtained from the genus Alisma are considered to be the material basis for the various biological functions and medicinal applications. In this review, we mainly focused on the recent investigations of secondary metabolites from plants of the genus Alisma and their biological activities, with the highlighting on the diversity of the chemical structures, the biosynthesis of interesting secondary metabolites, the biological activities, and the relationships between structures and bioactivities.


Assuntos
Alisma/química , Compostos Fitoquímicos/uso terapêutico , Plantas Medicinais/química , Humanos
9.
Int J Biol Macromol ; 167: 1262-1272, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189757

RESUMO

Carboxylesterase 2 (CES 2), plays a pivotal role in endobiotic homeostasis and xenobiotic metabolism. Protostanes, the major constituents of the genus Alisma, display a series of pharmacological activities. Despite the extensive studies of pharmacological activities, the investigation on inhibitory effects of protostanes against CES 2 is rarely reported. In this study, the inhibitory activities of a library of protostanes (1-25) against human CES 2 were investigated for the first time, using 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB) as the specific fluorescent probe for human CES 2. Compounds 1, 2, 7, 8, 12, 13, 18, 19, and 25 showed strong inhibitory effects towards CES 2. For the most potent compounds 1, 7, 13, and 25, the inhibition kinetics were further investigated, and these four protostanes were all uncompetitive inhibitors against human CES 2 with the inhibition constant (Ki) values ranging from 0.89 µM to 2.83 µM. In addition, molecular docking and molecular dynamics stimulation were employed to analyze the potential interactions between these protostanes and CES 2, and amino acid residue Gln422 was identified to play a crucial role in the strong inhibition of protostanes towards CES 2.


Assuntos
Alisma/química , Carboxilesterase/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Triterpenos/química , Triterpenos/farmacologia , Acridinas/química , Benzoatos/química , Corantes Fluorescentes/química , Concentração Inibidora 50 , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
10.
Bioorg Chem ; 102: 104065, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663670

RESUMO

Pulmonary fibrosis is a progressive, irreversible, and fatal fibrotic lung disease with a high mortality and morbidity, and commonly nonresponsive to conventional therapy. Inula japonica Thunb. is a traditional Chinese medicine, known as "Xuan Fu Hua" in Chinese, and has been widely applied to relieve cough and dyspnea and eliminate retained phlegm with a long history. In this study, we aimed to evaluate the anti-fibrosis effect and action mechanism of I. japonica extract (IJE) for the treatment of bleomycin (BLM)-induced pulmonary fibrosis in mice. IJE treatment significantly restored BLM-induced alterations in body weight loss and lung function decline, decreased the collagen deposition induced by BLM in lung tissues, and inhibited fibrotic and inflammatory factors, such as α-SMA, TGF-ß1, TNF-α, IL-6, COX-2, NF-κB, and GSK3ß, in a dose-dependent manner. We found that IJE could enhance the concentration of 8,9-epoxyeicosatrienoic acid (8,9-EET) and decrease concentrations of 8,9-dihydroxyeicosatrienoic acid (8,9-DHET), 11,12-DHET, and 14,15-DHET in BLM-induced mice. Meanwhile, IJE suppressed protein and mRNA expression levels of soluble epoxide hydrolase (sEH), and significantly displayed the inhibition of sEH activity with an IC50 value of 0.98 µg/mL. Our results indicated that IJE exerted remarkable anti-fibrosis effect on BLM-induced pulmonary fibrosis in mice via inhibiting sEH activity, resulting in the regulation of GSK3ß signaling pathway. Our findings revealed the underlying action mechanism of I. japonica, and suggested that I. japonica could be regarded as a candidate resource for the treatment of pulmonary fibrosis.


Assuntos
Epóxido Hidrolases/antagonistas & inibidores , Inula/química , Medicina Tradicional Chinesa/métodos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina/efeitos adversos , Humanos , Camundongos
11.
Eur J Med Chem ; 203: 112622, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32688203

RESUMO

Sesquiterpenoid oligomers, biogenetically assembled by at least two monomeric sesquiterpenoid units via diverse pathways, represent a unique class of natural products with distinct bioactivities. Herein, we provide a review covering the dimeric, trimeric, and tetrameric sesquiterpenoids categorized by reaction types in biosynthesis from a chemical perspective. Emphasis is focused on the biosynthetic oligomerization pathways of these interesting molecules and their related biological functions, which will supply inspiration for the total synthesis or biomimetic synthesis of more oligomeric sesquiterpenoids and further pharmacological investigations.


Assuntos
Desenho de Fármacos , Polimerização , Sesquiterpenos/química , Animais , Humanos , Sesquiterpenos/farmacologia
13.
Fitoterapia ; 146: 104668, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32540378

RESUMO

Two novel quinolone alkaloids (1 and 2) and two novel indole alkaloids (5 and 8), together with eleven known analogues, were isolated from the nearly ripe fruits of Evodia rutaecarpa. Their structures were determined by extensive spectroscopic data, including NMR, HRESIMS, and ECD. Additionally, the anti-tumor, hypoglycemic, and anti-bacterial activities of the isolated alkaloids were evaluated in vitro. Compound 5 as a new alkaloid displayed moderate inhibitory effect against four human cancer cell lines (MCF-7 IC50 = 30.7 µM, Hepg-2 IC50 = 65.2 µM, A549 IC50 = 39.1 µM, and SHSY-5Y IC50 = 24.7 µM), α-glucosidase (IC50 = 23.9 µM) and PTP1B (IC50 = 75.8 µM). Compound 11 showed better inhibitory effect against PTP1B (IC50 = 16.2 µM) compared with that of the positive control. Compounds 5, 13, and 14 showed moderate inhibitory effects against Bacillus cereus with MIC values of 50, 25, and 10 µM, respectively.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Evodia/química , Frutas/química , Alcaloides Indólicos/farmacologia , Quinolonas/farmacologia , Antibacterianos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Bacillus cereus/efeitos dos fármacos , Linhagem Celular Tumoral , China , Humanos , Alcaloides Indólicos/isolamento & purificação , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Quinolonas/isolamento & purificação
14.
Int J Biol Macromol ; 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32360461

RESUMO

The inhibition of soluble epoxide hydrolase (sEH) is regarded as a promising therapeutic approach to treat inflammation and its related disorders. In present work, we investigated inhibitory effects of forty-nine kinds of traditional Chinese medicines against sEH. Inula helenium showed significant inhibitory effect against sEH, and the extract of I. helenium were isolated to obtain eight compounds, including 4H-tomentosin (1), xanthalongin (2), and linoleic acid (3), 8-hydroxy-9-isobutyryloxy-10(2)-methylbutyrylthymol (4), dehydrocostus lactone (5), alantolactone (6), costunolide (7), and isoalantolactone (8). Among them, 4H-tomentosin (1), xanthalongin (2), and linoleic acid (3) showed significantly inhibitory activities on sEH with half maximal inhibitory concentration (IC50) from 5.88 ±â€¯0.97 µM to 11.63 ±â€¯0.58 µM. The inhibition kinetics suggested that 4H-tomentosin (1) and xanthalongin (2) were mixed-competitive type inhibitors with inhibition constant (Ki) values of 7.02 and 6.57 µM, respectively, and linoleic acid (3) was a competitive type inhibitor with a Ki values of 3.52 µM. The potential interactions of 4H-tomentosin (1), xanthalongin (2), and linoleic acid (3) with sEH were analyzed by molecular docking, which indicated that these bioactive compounds had interactions with key amino acid residues Tyr343, Ile363, Tyr383, and His524.

15.
Int J Biol Macromol ; 159: 1022-1030, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32428588

RESUMO

Cardiovascular diseases, such as hypertension and cardiac failure, have become the most major and global cause for threatening human health in recent years. Uncaria rhynchophylla as a traditional Chinese medicine is widely used to treat hypertension for a long history, whereas its medicinal effective components and potential action mechanism are uncertain. Therefore, twenty-four alkaloids (1-24) isolated from U. rhynchophylla were assayed for their relaxant effects against phenylephrine (Phe)-induced contraction of rat mesenteric arteries. Among them, we surprisingly found that uncarialin A (21) exhibited most potent relaxation effect against Phe-induced contraction (IC50 = 0.18 µM) in the manner of independent on endothelium-derived vasorelaxing factors and endothelium. All the experiments including measurement of Ca2+ in vascular smooth muscle cells (VSMCs) by fluorescence microscopy, whole-cell path clamp, molecular docking, and molecular dynamics, demonstrated that uncarialin A (21) could significantly inhibit L-type calcium channel subunit alpha-1C (Cav1.2) via the hydrogen bond interaction with amino acid residue Met1186, allowing the inhibition of Ca2+ inward current. Our results suggested that uncarialin A (21) could be served as a potential L-type Cav1.2 blocker in the effective treatment of cardiovascular diseases.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Medicamentos de Ervas Chinesas/química , Vasodilatadores/farmacologia , Alcaloides/análise , Animais , Sítios de Ligação , Células CHO , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo L/química , Células Cultivadas , Cricetinae , Cricetulus , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Uncaria/química , Vasodilatadores/química
16.
Int J Biol Macromol ; 143: 349-358, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31830453

RESUMO

ß-Glucuronidase plays a vital role in the metabolism of drugs and endogenous substance. Herein, we assayed the inhibitory effects of thirty-six flavonoids (1-36) toward ß-glucuronidase (Escherichia coli) using the probe reaction of DDAO-glu hydrolysis. The results showed that kushenol X (6), (2S)-farrerol (10), 5,7,2'-trihydroxy-8,6'-dimethoxy flavone (20), demethylbellidifolin (31), and gentisin (32) exhibited potent inhibitory activities toward ß-glucuronidase with the IC50 values of 2.07 ± 0.26, 8.95 ± 0.74, 4.97 ± 0.61, 0.91 ± 0.11, and 0.68 ± 0.10 µM, respectively. Furthermore, the inhibition kinetics studies indicated that demethylbellidifolin (31) and gentisin (32) exhibited mixed-type inhibiton toward ß-glucuronidase, the Ki values were caculated to be 4.05 and 2.02 µM, respectively. Additionally, the circular change of dichroism (CD) spectrum verified the interaction between demethylbellidifolin (31) and gentisin (32) with ß-glucuronidase; following by the molecular docking and molecular dynamics further revealed the potential interaction amino acid site in ß-glucuronidase. All our findings not only developed some potent novel ß-glucuronidase inhibitors but also indicated the potential herb drug interaction (HDI) effects of flavonoids with some clinical drugs which had enterohepatic circulation and further revealed the vital pharamcophoric requirement of natural flavonoids for ß-glucuronidase inhibition activity.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Glucuronidase/genética , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Flavonoides/química , Glucuronidase/antagonistas & inibidores , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
17.
J Nat Prod ; 82(12): 3302-3310, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31789520

RESUMO

Nine new monoterpenoid indole alkaloids, uncarialins A-I (1-9), were isolated from Uncaria rhynchophylla as well as 14 known analogues (10-23). Their structures were determined by HRESIMS, 1D and 2D NMR, and experimental and calculated electronic circular dichroism data. Compounds 5, 7, 15, and 22 displayed significant agonistic effects against the 5-HT1A receptor with EC50 values of 2.2 ± 0.1, 0.1 ± 0.1, 1.6 ± 0.3, and 2.0 ± 0.5 µM, respectively. The mechanisms of action of these four compounds with the 5-HT1A receptor were investigated by molecular docking, and the results suggested that amino acid residues Asp116, Thr196, Asn386, and Tyr390 played critical roles in the observed activity of the above-mentioned compounds.


Assuntos
Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Alcaloides de Triptamina e Secologanina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Uncaria/química , Animais , Células CHO , Cricetulus , Simulação de Acoplamento Molecular , Estrutura Molecular , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/isolamento & purificação , Agonistas do Receptor de Serotonina/química , Agonistas do Receptor de Serotonina/isolamento & purificação , Análise Espectral/métodos
18.
Eur J Med Chem ; 182: 111652, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31494470

RESUMO

Farnesoid X receptor (FXR) is a key regulator in charge of bile acid synthesis, transport, and metabolism. Activation of FXR represses bile acid synthesis and increases its excretion and transport, consequently protecting the liver functions. Thus, FXR is considered as a critical therapeutic target of cholestasis and nonalcoholic steatohepatitis. Herein, we isolated and identified fourteen new protostane-type triterpenoids (1-14) and four known analogues (15-18) from Alisma orientale, and finally constructed a small library of protostane-type triterpenoids (1-70) to investigate their structure-activity relationship with FXR, further leading to obtain compound 15 with potent agonistic activity against FXR (EC50 = 90 nM). Extensive in vitro investigation confirmed high efficacy of compound 15 against FXR in living cell, and revealed its underlying mechanism for FXR activation (amino acid residues Arg331 and Ser332) by molecular docking and site-directed mutagenesis technology.


Assuntos
Produtos Biológicos/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Terpenos/farmacologia , Alisma/química , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Células Cultivadas , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Receptores Citoplasmáticos e Nucleares/genética , Relação Estrutura-Atividade , Terpenos/química , Terpenos/isolamento & purificação
19.
Bioorg Chem ; 90: 103101, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291611

RESUMO

In this study, forty-nine kinds of traditional Chinese medicines (TCMs) were evaluated for their inhibitory activities against human carboxylesterase 2 (HCE 2) using a human liver microsome (HLM) system. Swertia bimaculata showed significant inhibition on HCE 2 at 10 µg/mL among forty-nine kinds of TCMs. The extract of Swertia bimaculata was separated by preparative HPLC to afford demethylbellidifolin (1) identified by MS, 1H NMR, and 13C NMR spectra. Demethylbellidifolin (1) was assayed for its inhibitory HCE 2 effect by HCE 2-mediated DDAB hydrolysis, and its potential IC50 value was 3.12 ±â€¯0.64 µM. Demethylbellidifolin (1) was assigned as a mixed-type competitive inhibitor with the inhibiton constant Ki value of 6.87 µM by Lineweaver-Burk and slope plots. Living cell imaging was conducted to corroborate its inhibitory HCE 2 activity. Molecular docking indicated potential interactions of demethylbellidifolin (1) with HCE 2 through two hydrogen bonds of the C-3 and C-5 hydroxy groups with amino acid residues Glu227 and Ser228 in the catalytic cavity, respectively.


Assuntos
Carboxilesterase/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Swertia/química , Xantenos/isolamento & purificação , Xantenos/farmacologia , Carboxilesterase/metabolismo , Humanos , Hidrólise , Microssomos Hepáticos/enzimologia , Estrutura Molecular
20.
Int J Biol Macromol ; 135: 1028-1033, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31163244

RESUMO

Laccase (LAC) belongs to the blue multi­copper lignolytic oxidase enzymes, and has been regarded as an important tool to produce some important dimers in the application of biotechnology. In this study, sixteen coumarins 1-16 were screened to investigate the catalytic ability of LAC, and three coumarins 6, 7, and 16 could be catalyzed to produce three coumarin derivative coupling with acetone 6a, 7a, and 16a. The potential interaction mechanisms of three coumarins 6, 7, and 16 with LAC were analyzed by molecular docking. The kinetic analyses of catalytic reactions for coumarins 6, 7, and 16 with LAC were performed by using the transformed products 6a, 7a, and 16a as standard substances. Km values of coumarins 6, 7, and 16 were ranged from 0.87 ±â€¯0.07 µM to 2.74 ±â€¯0.29 µM, respectively. This finding suggested that LAC was a reliable method to catalyze oxidative coupling.


Assuntos
Cumarínicos/química , Lacase/química , Acoplamento Oxidativo , Biotransformação , Catálise , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Análise Espectral , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...