Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22915, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129476

RESUMO

In addition to analysing the mechanism of failure of the prestressed rock anchor anchor system and investigating the appropriate depth for fixing the rock anchors, theoretical equations were derived to calculate the rock anchors' axial force, ultimate capacity, and the interfacial shear force in the elastic phase. These equations are then used to analyse the pressure distribution within the rock bolt anchorage section and to investigate the effect of interfacial shear strength, shear stiffness, and anchorage length on interface failure. Drawing on the findings from both field-based rock bolt pull-out tests and numerical simulations, analyzed the failure mechanism of the anchor system, and proposed a reasonable anchor length design method for rock bolt. The results show that there is a strong dependence between ultimate load carrying capability of rock bolts and interfacial shear stress and shear rigidity, and that increasing the anchorage length and reducing the interface shear stiffness can avoid the stress concentration phenomenon. The primary factor leading to the anchor system failure is secondary interface failure. The evolution law of interface damage is that the damage occurs first at the initial position. As the interface damage location changes, the peak shearing stress moves towards the bottom of the anchored section. The engineering application results verified the feasibility of a reasonable anchorage length calculation method and rock bolt design process. The findings of this paper can be used as a basic reference for determining rock bolt anchorage support parameters during the design and construction of underground engineering projects.

2.
Adv Sci (Weinh) ; 8(10): 2004572, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026452

RESUMO

This work reports a novel approach for the synthesis of FeCo alloy nanoparticles (NPs) embedded in the N,P-codoped carbon coated nitrogen-doped carbon nanotubes (NPC/FeCo@NCNTs). Specifically, the synthesis of NCNT is achieved by the calcination of graphene oxide-coated polystyrene spheres with Fe3+, Co2+ and melamine adsorbed, during which graphene oxide is transformed into carbon nanotubes and simultaneously nitrogen is doped into the graphitic structure. The NPC/FeCo@NCNT is demonstrated to be an efficient and durable bifunctional catalyst for oxygen evolution (OER) and oxygen reduction reaction (ORR). It only needs an overpotential of 339.5 mV to deliver 10 mA cm-2 for OER and an onset potential of 0.92 V to drive ORR. Its bifunctional catalytic activities outperform those of the composite catalyst Pt/C + RuO2 and most bifunctional catalysts reported. The experimental results and density functional theory calculations have demonstrated that the interplay between FeCo NPs and NCNT and the presence of N,P-codoped carbon structure play important roles in increasing the catalytic activities of the NPC/FeCo@NCNT. More impressively, the NPC/FeCo@NCNT can be used as the air-electrode catalyst, improving the performance of rechargeable liquid and flexible all-solid-state zinc-air batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...