Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(30): 20512-20519, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37435366

RESUMO

Catheter embolization is a minimally invasive technique that relies on embolic agents and is now widely used to treat various high-prevalence medical diseases. Embolic agents usually need to be combined with exogenous contrasts to visualize the embolotherapy process. However, the exogenous contrasts are quite simply washed away by blood flow, making it impossible to monitor the embolized location. To solve this problem, a series of sodium hyaluronate (SH) loaded with bismuth sulfide (Bi2S3) nanorods (NRs) microspheres (Bi2S3@SH) were prepared in this study by using 1,4-butaneglycol diglycidyl ether (BDDE) as a crosslinker through single-step microfluidics. Bi2S3@SH-1 microspheres showed the best performance among other prepared microspheres. The fabricated microspheres had uniform size and good dispersibility. Furthermore, the introduction of Bi2S3 NRs synthesized by a hydrothermal method as Computed Tomography (CT) contrast agents improved the mechanical properties of Bi2S3@SH-1 microspheres and endowed the microspheres with excellent X-ray impermeability. The blood compatibility and cytotoxicity test showed that the Bi2S3@SH-1 microspheres had good biocompatibility. In particular, the in vitro simulated embolization experiment results indicate that the Bi2S3@SH-1 microspheres had excellent embolization effect, especially for the small-sized blood vessels of 500-300 and 300 µm. The results showed the prepared Bi2S3@SH-1 microspheres have good biocompatibility and mechanical properties, as well as certain X-ray visibility and excellent embolization effects. We believe that the design and combination of this material has good guiding significance in the field of embolotherapy.

2.
Photodiagnosis Photodyn Ther ; 39: 102988, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35781095

RESUMO

In this study, Rose Bengal (RB) was loaded onto mesoporous silica coated gold nanorods (AuNR@SiO2-NH2) to form a novel multifunctional platform for antimicrobial therapy (AuNR@SiO2-NH2-RB). The platform combines the photothermal functions of AuNR and the photodynamic functions of RB to effectively inactivate bacteria under irradiation. Moreover, AuNR@SiO2-NH2-RB showed negligible cytotoxicity and good blood compatibility. Therefore, this work has potential significance for the development of new antibacterial agents.


Assuntos
Nanotubos , Fotoquimioterapia , Antibacterianos/farmacologia , Ouro/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Rosa Bengala/farmacologia , Dióxido de Silício
3.
Photodiagnosis Photodyn Ther ; 35: 102417, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34186263

RESUMO

Background and objective Photodynamic therapy (PDT) and photothermal therapy (PTT) have gradually become options for select anti-tumor and antibacterial treatment . The combination of PDT and PTT show great research value, which may greatly improve the curative effect. The aim of the present study was to prepare a compound system of polydopamine and curcumin (PDA-Cur nanocomposites) with excellent antibacterial effect towards Gram-positive and Gram-negative bacteria. Methods Dopamine hydrochloride was oxidized and self polymerized in alkaline condition to form PDA-Cur nanocomposites. The structure and morphology of PDA-Cur were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), laser scattering microscopy (LSM), ultraviolet spectrophotometer (UV-vis), infrared spectroscopy (IR) and fluorescence emission spectrometer. Using 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), 1,3-diphenylbenzofuran (DPBF) and 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) were used to detect the production of reactive oxygen species (ROS). The thermal stability of PDA-Cur nanocomposites was investigated by temperature rising test. The antibacterial effect of PDA-Cur was determined by plate counting technique using Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) as models. In addition, the stability and antibacterial mechanism of PDA-Cur were investigated. Finally, the biocompatibility was evaluated by cytotoxicity and hemolysis tests. Results The compound system of polydopamine and curcumin was successfully prepared, which showed improved stability compared with Cur. The consumption of DPBF by the singlet oxygen produced by PDA-Cur was as high as 80%. In the heating test, the highest temperature increased to 59 °C, which contributed to the photodynamic and photothermal inactivation of bacteria. PDA-Cur nanocomposites showed good antibacterial activity against S. aureus and E. coli. Under 405 nm light, the bactericidal rate of PDA-Cur against S. aureus can reach 100% at a low concentration of 10-4 nM, and that against E. coli was 100% at 1 nM. Under 405 + 808 nm light, the bactericidal rate of PDA-Cur against E. coli enhanced to 100% at 0.1 nM. In addition, PDA-Cur had low cytotoxicity and negligible hemolytic activity, showing good biocompatibility. Conclusion PDA-Cur nanocomposites had good photodynamic effect, photo thermal conversion ability and biocompatibility. Compared with free Cur, the antibacterial activity of PDA-Cur was significantly improved, and the antibacterial effect with combined light was stronger than that of free Cur. Therefore, the construction of PDA-Cur nanocomposites have confirmed that the combination of PDT and PTT can greatly improve the antibacterial effect and reach bactericidal effect at low concentration, which provides a strategy for the design of next generation antimicrobial agents.


Assuntos
Anti-Infecciosos , Curcumina , Nanocompostos , Fotoquimioterapia , Antibacterianos/farmacologia , Curcumina/farmacologia , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Indóis , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Polímeros , Staphylococcus aureus
4.
ACS Appl Bio Mater ; 4(9): 6703-6718, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006973

RESUMO

Photosensitizer (PS)-mediated photodynamic therapy (PDT) has attracted more and more attention as an alternative to traditional antibiotic therapy. Nevertheless, the limitations of traditional photosensitizers seriously hinder their practical application, as a result, the methods to improve the antibacterial properties of traditional photosensitizers have become a hot topic in the field of photomedicine. Herein, a compound nano-PS system has been constructed with synergistic photodynamic and photothermal (PTT) antibacterial effects, triggered by a dual-wavelength illumination. Fluorescent carbon dots (CDs) were synthesized and employed as carriers for the delivery of curcumin (Cur) to obtain CDs/Cur. Upon combined near-infrared and 405 nm visible dual-wavelength irradiation, CDs/Cur could simultaneously generate ROS and a moderate temperature increase, triggering synergistic antibacterial effects against both Gram-positive and Gram-negative bacteria. The results of scanning electron microscopy and fluorescence confocal imaging showed that the combined effect of CDs/Cur with PDT and PTT caused more serious damage to the cell membrane. In addition, CDs/Cur exhibited low cytotoxicity and negligible hemolytic activity, showing great biocompatibility. Therefore, the construction of CDs/Cur by employing CDs as photosensitizer delivery carriers provides a strategy for the improvement of the antibacterial effect of the photosensitizer and the design of next-generation antibacterial agents in photomedicine.


Assuntos
Curcumina , Nanocompostos , Antibacterianos/farmacologia , Carbono/farmacologia , Corantes , Curcumina/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fármacos Fotossensibilizantes/farmacologia
5.
ACS Appl Bio Mater ; 4(9): 6742-6757, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006976

RESUMO

The global rise of antibiotic resistance of pathogenic bacteria has become an increasing medical and public concern, which is further urging the development of antimicrobial channels for treating infectious diseases. The combination of photodynamic therapy (PDT) with photothermal therapy (PTT) has been considered as a promising alternative way for the replacement of traditional antibiotic therapy. In this research, the newly fabricated Chlorin-e6 (Ce6) conjugated mesoporous silica-coated AuNRs, designated AuNR@SiO2-NH2-Ce6, exhibited synergistic photothermal effects and single oxygen localized generation property, and showed stronger photoinactivation for bacteria compared with Ce6. AuNR@SiO2-NH2-Ce6 can anchor to the cell membrane and accumulate in the interior of cells. Furthermore, the unique porous structure of AuNR@SiO2NH2 enabled Ce6 encapsulation in the mesopores and was subsequently released and activated by photothermic effect, allowing the generated single oxygen to penetrate into the cytoplasmic membrane or directly enter the interior of bacteria cells, thus overcoming the inherent defects of single oxygen. AuNR@SiO2-NH2-Ce6 not only damaged the integrity of the cell membrane of bacteria but also facilitated the cellular permeation and accumulation of external nanoagents in the bacteria upon light irradiation. In addition, AuNR@SiO2-NH2-Ce6 exhibited negligible cytotoxicity toward mammalian cells and hemolytic activity. Therefore, AuNR@SiO2-NH2-Ce6 may be highly promising candidates as topical antibacterial agents, and this study has wide implications on the design of next-generation antimicrobial agents.


Assuntos
Clorofilídeos , Nanotubos , Animais , Bactérias , Ouro/farmacologia , Mamíferos , Nanotubos/química , Oxigênio , Fármacos Fotossensibilizantes/farmacologia , Dióxido de Silício/farmacologia
6.
Photodiagnosis Photodyn Ther ; 32: 102049, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059109

RESUMO

Half-sandwich Cp*-Rh complexes containing curcuminoids ([Rh(η5-Cp*)(L)(Py)]PF6, 1-3, L = curcuminoid ligands L1-L3) were prepared, characterized and studied for anticancer activity. Complex 1 was structurally characterized by single-crystal X-ray crystallography. Complex 3 presented excellent photodynamic anticancer effect in light (>400 nm) showing IC50 values of 7.5 and 4.3 µM against HepG2, SKOV3 and HeLa, respectively, along with the 12.4, 7.9 and 4.7-fold lower toxicity in the dark. Confocal fluorescence images show that the complex primarily targeted mitochondrial localization. These results suggest that the complex 3 was a valuable agent with higher efficacy for chemotherapy and photodynamic therapy, which can achieve real-time image guidance in cancer therapy for the fluorescence of the complex as imaging signals. This investigation provides a valuable route to design novel half-sandwich Cp*-Rh complexes with higher efficacy for photodynamic anticancer chemotherapy.


Assuntos
Antineoplásicos , Fotoquimioterapia , Ródio , Antineoplásicos/farmacologia , Cristalografia por Raios X , Diarileptanoides , Humanos , Irídio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...