Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(14)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781024

RESUMO

Inactivation of phosphatase and tensin homolog (PTEN) is prevalent in human prostate cancer and causes high-grade adenocarcinoma with a long latency. Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor progression, but it remains elusive whether and how PTEN-deficient prostate cancers reprogram CAFs to overcome the barriers for tumor progression. Here, we report that PTEN deficiency induced Krüppel-like factor 5 (KLF5) acetylation and that interruption of KLF5 acetylation orchestrated intricate interactions between cancer cells and CAFs that enhance FGF receptor 1 (FGFR1) signaling and promote tumor growth. Deacetylated KLF5 promoted tumor cells to secrete TNF-α, which stimulated inflammatory CAFs to release FGF9. CX3CR1 inhibition blocked FGFR1 activation triggered by FGF9 and sensitized PTEN-deficient prostate cancer to the AKT inhibitor capivasertib. This study reveals the role of KLF5 acetylation in reprogramming CAFs and provides a rationale for combined therapies using inhibitors of AKT and CX3CR1.


Assuntos
Fibroblastos Associados a Câncer , Fatores de Transcrição Kruppel-Like , PTEN Fosfo-Hidrolase , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Humanos , Acetilação , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Animais , Camundongos , Reprogramação Celular , Linhagem Celular Tumoral
2.
iScience ; 27(5): 109741, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706871

RESUMO

Pancreatic cancer (PC) is a lethal disease and associated with metabolism dysregulation. Nogo-B is related to multiple metabolic related diseases and types of cancers. However, the role of Nogo-B in PC remains unknown. In vitro, we showed that cell viability and migration was largely reduced in Nogo-B knockout or knockdown cells, while enhanced by Nogo-B overexpression. Consistently, orthotopic tumor and metastasis was reduced in global Nogo knockout mice. Furthermore, we indicated that glucose enhanced cell proliferation was associated to the elevation expression of Nogo-B and nuclear factor κB (NF-κB). While, NF-κB, glucose transporter type 1 (GLUT1) and sterol regulatory element-binding protein 1 (SREBP1) expression was reduced in Nogo-B deficiency cells. In addition, we showed that GLUT1 and SREBP1 was downstream target of NF-κB. Therefore, we demonstrated that Nogo deficiency inhibited PC progression is regulated by the NF-κB/GLUT1 and SREBP1 pathways, and suggested that Nogo-B may be a target for PC therapy.

3.
J Adv Res ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38432393

RESUMO

INTRODUCTION: Vascular calcification, a devastating vascular complication accompanying atherosclerotic cardiovascular disease and chronic kidney disease, increases the incidence of adverse cardiovascular events and compromises the efficacy of vascular interventions. However, effective therapeutic drugs and treatments to delay or prevent vascular calcification are lacking. OBJECTIVES: This study was designed to test the therapeutic effects and mechanism of Moscatilin (also known as dendrophenol) from Dendrobium huoshanense (an eminent traditional Chinese medicine) in suppressing vascular calcification in vitro, ex vivo and in vivo. METHODS: Male C57BL/6J mice (25-week-old) were subjected to nicotine and vitamin D3 (VD3) treatment to induce vascular calcification. In vitro, we established the cellular model of osteogenesis of human aortic smooth muscle cells (HASMCs) under phosphate conditions. RESULTS: By utilizing an in-house drug screening strategy, we identified Moscatilin as a new naturally-occurring chemical entity to reduce HASMC calcium accumulation. The protective effects of Moscatilin against vascular calcification were verified in cultured HASMCs. Unbiased transcriptional profiling analysis and cellular thermal shift assay suggested that Moscatilin suppresses vascular calcification via binding to interleukin 13 receptor subunit A2 (IL13RA2) and augmenting its expression. Furthermore, IL13RA2 was reduced during HASMC osteogenesis, thus promoting the secretion of inflammatory factors via STAT3. We further validated the participation of Moscatilin-inhibited vascular calcification by the classical WNT/ß-catenin pathway, among which WNT3 played a key role in this process. Moscatilin mitigated the crosstalk between WNT3/ß-catenin and IL13RA2/STAT3 to reduce osteogenic differentiation of HASMCs. CONCLUSION: This study supports the potential of Moscatilin as a new naturally-occurring candidate drug for treating vascular calcification via regulating the IL13RA2/STAT3 and WNT3/ß-catenin signalling pathways.

4.
Cell Biol Toxicol ; 40(1): 10, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319449

RESUMO

Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.


Assuntos
Antígenos CD36 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácidos Graxos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt , Antígenos CD36/genética
5.
Int Immunopharmacol ; 125(Pt B): 111198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952482

RESUMO

Vascular calcification is an independent risk factor for cardiovascular disease. However, there is still a lack of adequate treatment. This study aimed to examine the potential of (E)-1-(5-(2-(4-fluorobenzyloxy)Styryl)-4,6-dimethoxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazole-1-yl) ethyl ketone (Ptd-1) to alleviate vascular calcification. ApoE-deficient mice were fed a high-fat diet for 12/16 weeks to induce intimal calcification, and wild-type mice were induced with a combination of nicotine and vitamin D3 to induce medial calcification. Human aortic smooth muscle cells (HASMCs) and aortic osteogenic differentiation were induced in vitro with phosphate. In the mouse model of atherosclerosis, Ptd-1 significantly ameliorated the progression of atherosclerosis and intimal calcification, and there were significant reductions in lipid deposition and calcium salt deposition in the aorta and aortic root. In addition, Ptd-1 significantly improved medial calcification in vivo and osteogenic differentiation in vitro. Mechanistically, Ptd-1 reduced the levels of the inflammatory factors IL-1ß, TNFα and IL-6 in vivo and in vitro. Furthermore, we demonstrated that Ptd-1 could attenuate the expression of p-ERK1/2 and ß-catenin, and that the levels of inflammatory factors were elevated in the presence of ERK1/2 and ß-catenin agonists. Interestingly, we determined that activation of the ERK1/2 pathway promoted ß-catenin expression, which further regulated the IL-6/STAT3 signaling pathway. Ptd-1 blocked ERK1/2 signaling, leading to decreased expression of inflammatory factors, which in turn improved vascular calcification. Taken together, our study reveals that Ptd-1 ameliorates vascular calcification by regulating the production of inflammatory factors, providing new ideas for the treatment of vascular calcification.


Assuntos
Aterosclerose , Calcificação Vascular , Humanos , Animais , Camundongos , beta Catenina , Interleucina-6 , Osteogênese , Calcificação Vascular/tratamento farmacológico , Inflamação/tratamento farmacológico , Aterosclerose/tratamento farmacológico
6.
Int Immunopharmacol ; 125(Pt A): 111168, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939513

RESUMO

Triple negative breast cancer (TNBC) is regarded as one of the most aggressive forms of breast cancer. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) has been used as a therapeutic agent for Niemann-Pick disease Type C (NPC). However, the exact actions and mechanisms of HP-ß-CD on TNBC are not fully understood. To examine the influence of HP-ß-CD on the proliferation and migration of TNBC cell lines, particularly 4T1 and MDA-MB-231 cells, a range of assays, including MTT, scratch, cell cycle, and clonal formation assays, were performed. Furthermore, the effectiveness of HP-ß-CD in the treatment of TNBC was assessed in vivo using a 4T1 tumor-bearing BALB/c mouse model. We demonstrated the anti-proliferation and anti-migration effect of HP-ß-CD on TNBC both in vitro and in vivo. High cholesterol diet can attenuate HP-ß-CD-inhibited TNBC growth. Mechanistically, HP-ß-CD reduced tumor cholesterol levels by increasing ABCA1 and ABCG1-mediated cholesterol reverse transport. HP-ß-CD promoted the infiltration of T cells into the tumor microenvironment (TME) and improved exhaustion of CD8+ T cells via reducing immunological checkpoint molecules expression. Additionally, HP-ß-CD inhibited the recruitment of tumor associated macrophages to the TME via reducing CCL2-p38MAPK-NF-κB axis. HP-ß-CD also inhibited the epithelial mesenchymal transition (EMT) of TNBC cells mediated by the TGF-ß signaling pathway. In summary, our study suggests that HP-ß-CD effectively inhibited the proliferation and metastasis of TNBC, highlighting HP-ß-CD may hold promise as a potential antitumor drug.


Assuntos
Neoplasias de Mama Triplo Negativas , Camundongos , Animais , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Linfócitos T CD8-Positivos/metabolismo , NF-kappa B , Colesterol/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Movimento Celular , Microambiente Tumoral
7.
Stem Cell Res Ther ; 14(1): 316, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924141

RESUMO

BACKGROUND: Autoimmune hepatitis (AIH) is a T-cell-mediated autoimmune liver disease that can lead to liver injury and has a poor long-term prognosis. Mesenchymal stromal cells (MSCs) have immunosuppressive effects and can treat AIH. CD4+ T cells express the unique inhibitory Fcγ receptor (FcγRIIB), which is the only receptor for the immunosuppressive factor soluble fibrinogen-like protein 2 (sFgl2). This study aimed to examine the therapeutic effect of sFgl2 gene-modified MSCs (sFgl2-MSCs) on AIH. METHODS: MSCs were obtained from the inguinal fat of mice and cocultured with CD4+ T cells sorted from mouse spleens. FcγRIIB expression on CD4+ T cells was determined by flow cytometry. sFgl2 expression in MSCs transfected with lentiviral vectors carrying the Fgl2 gene and a green fluorescent protein-encoding sequence was determined by enzyme-linked immunosorbent assay. The percentages of Th1 cells Th17 cells and regulatory T cells (Tregs) were determined by flow cytometry And the levels of p-SHP2 and p-SMAD2/3 were detected by Western blotting after the cells were cocultured with MSCs for 72 h. After locating MSCs by in vivo imaging Con A-induced experimental AIH mice were randomly divided into 4 groups and administered different treatments. After 24 h histopathological scores liver function and cytokine levels were examined and the proportions of CD4+ T cells CD8+ T cells Tregs Th17 cells and Th1 cells in the spleen and liver were determined by flow cytometry. In addition immunohistochemical staining was used to detect the liver infiltration of T-bet-, Foxp3- and RORγ-positive cells. RESULTS: FcγRIIB expression on CD4+ T cells was upregulated after coculture with MSCs. After coculture with sFgl2-MSCs, the proportion of Tregs among CD4+ T cells increased, the proportion of Th17 and Th1 cells decreased, and the levels of p-SHP2 and p-SMAD2/3 increased. In vivo, sFgl2-MSCs significantly improved liver function, decreased liver necrosis area, decreased tumor necrosis factor-α, interleukin (IL)-1ß and IL-6 expression, increased IL-10 expression, reduced liver infiltration of CD4+ T and CD8+ T cells, increased the proportion of Tregs and reduced the proportions of Th17 and Th1 cells in mice. CONCLUSION: By promoting Tregs differentiation and inhibiting Th17 and Th1 cell differentiation, sFgl2 gene-modified MSCs have a more powerful therapeutic effect on Con A-induced experimental AIH and may represent a strategy for the clinical treatment of AIH.


Assuntos
Fibrinogênio , Hepatite Autoimune , Células-Tronco Mesenquimais , Linfócitos T Reguladores , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Fibrinogênio/metabolismo , Hepatite Autoimune/genética , Hepatite Autoimune/terapia , Células-Tronco Mesenquimais/metabolismo , Células Th1 , Células Th17 , Animais , Camundongos
8.
J Inflamm Res ; 16: 5171-5188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026254

RESUMO

Background: Ulcerative colitis (UC) is a severe threat to humans worldwide. Single-cell RNA sequencing (scRNA-seq) can be used to screen gene expression patterns of each cell in the intestine, provide new insights into the potential mechanism of UC, and analyze the development of immune cell changes. These findings can provide new ideas for the diagnosis and treatment of intestinal diseases. In this study, bioinformatics analysis combined with experiments applied in dextran sulfate sodium (DSS)-induced colitis mice was used to explore new diagnostic genes for UC and their potential relationship with immune cells. Methods: We downloaded microarray datasets (GSE75214, GSE87473, GSE92415) from the Gene Expression Omnibus and used these datasets to screen differentially expressed genes (DEGs) and conduct Weighted Gene Co-expression Network Analysis (WGCNA) after quality control. The hub genes were screened, and ROC curves were drawn to verify the reliability of the results in both training set (GSE75214, GSE87473, GSE92415) and validation cohort (GSE87466). Also, we explored the relation of diagnostic genes and immune cells by CIBERSORT algorithm and single-cell analysis. Finally, the expression of hub genes and their relation with immune cells were verified in DSS-induced colitis mice. Results: Diagnostic genes (ANXA5, MMP7, NR1H4, CYP3A4, ABCG2) were identified. In addition, we found these five genes firmly related to immune infiltration. The DSS-induced colitis mice confirm that the expression of ANXA5 mainly increased in the intestinal macrophages and had a strong negative correlation with M2 macrophages, which indicated its possible influence on the polarization of macrophages in UC patients. Conclusion: We identified ANXA5, MMP7, NR1H4, CYP3A4, and ABCG2 as diagnostic genes of UC that are closely related to immune infiltration and ANXA5 maintains a negative correlation with M2 macrophages which indicated its possible influence on the polarization of macrophage in UC patients.

10.
BMC Med ; 21(1): 68, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810084

RESUMO

BACKGROUND: Castration-resistant prostate cancer often metastasizes to the bone, and such bone metastases eventually become resistant to available therapies, leading to the death of patients. Enriched in the bone, TGF-ß plays a pivotal role in bone metastasis development. However, directly targeting TGF-ß or its receptors has been challenging for the treatment of bone metastasis. We previously found that TGF-ß induces and then depends on the acetylation of transcription factor KLF5 at K369 to regulate multiple biological processes, including the induction of EMT, cellular invasiveness, and bone metastasis. Acetylated KLF5 (Ac-KLF5) and its downstream effectors are thus potential therapeutic targets for treating TGF-ß-induced bone metastasis in prostate cancer. METHODS: A spheroid invasion assay was applied to prostate cancer cells expressing KLF5K369Q, which mimics Ac-KLF5, to screen 1987 FDA-approved drugs for invasion suppression. Luciferase- and KLF5K369Q-expressing cells were injected into nude mice via the tail artery to model bone metastasis. Bioluminescence imaging, micro-CT), and histological analyses were applied to monitor and evaluate bone metastases. RNA-sequencing, bioinformatic, and biochemical analyses were used to understand nitazoxanide (NTZ)-regulated genes, signaling pathways, and the underlying mechanisms. The binding of NTZ to KLF5 proteins was evaluated using fluorescence titration, high-performance liquid chromatography (HPLC), and circular dichroism (CD) analysis. RESULTS: NTZ, an anthelmintic agent, was identified as a potent invasion inhibitor in the screening and validation assays. In KLF5K369Q-induced bone metastasis, NTZ exerted a potent inhibitory effect in preventive and therapeutic modes. NTZ also inhibited osteoclast differentiation, a cellular process responsible for bone metastasis induced by KLF5K369Q. NTZ attenuated the function of KLF5K369Q in 127 genes' upregulation and 114 genes' downregulation. Some genes' expression changes were significantly associated with worse overall survival in patients with prostate cancer. One such change was the upregulation of MYBL2, which functionally promotes bone metastasis in prostate cancer. Additional analyses demonstrated that NTZ bound to the KLF5 protein, KLF5K369Q bound to the promoter of MYBL2 to activate its transcription, and NTZ attenuated the binding of KLF5K369Q to the MYBL2 promoter. CONCLUSIONS: NTZ is a potential therapeutic agent for bone metastasis induced by the TGF-ß/Ac-KLF5 signaling axis in prostate cancer and likely other cancers.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Camundongos Nus , Neoplasias da Próstata/genética , Fatores de Transcrição , Fator de Crescimento Transformador beta , Linhagem Celular Tumoral , Fatores de Transcrição Kruppel-Like/genética
11.
Acta Pharmacol Sin ; 44(3): 635-646, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35995867

RESUMO

Recent studies show that liver X receptor (LXR) agonists exert significant antitumor effects in a variety of tumor cell lines including hepatocellular carcinoma (HCC). But the molecular mechanisms underlying LXR antitumor activity are not fully understood. In this study we investigated the effect of LXR agonist T0901317 (T317) on HCC development and its relationship with RalA binding protein 1 (RALBP1)-associated EPS domain containing 2 (REPS2)/epidermal growth factor receptor (EGFR) signaling axis. We showed that T317 (0.1-0.5 µM) dose-dependently increased REPS2 expression in normal hepatocytes (BNLCL.2 and LO2) and HCC cells (HepG2 and Huh-7). Using promoter activity assay and chromatin immunoprecipitation (CHIP) assay we demonstrated that T317 enhanced REPS2 expression at the transcriptional level via promoting the binding of LXR protein to the LXR-response element (LXRE) in the REPS2 promoter region. We showed that the inhibitory effect of T317 on the proliferation and migration of HCC cells was closely related to REPS2. Moreover, we revealed that T317 (400 nM) increased expression of REPS2 in HepG2 cells, thus inhibiting epidermal growth factor (EGF)-mediated endocytosis of EGFR as well as the downstream activation of AKT/NF-κB, p38MAPK, and ERK1/2 signaling pathways. Clinical data analysis revealed that REPS2 expression levels were inversely correlated with the development of HCC and reduced REPS2 expression associated with poor prognosis, suggesting that REPS2 might be involved in the development of HCC. In conclusion, this study provides new insights into the potential mechanisms of LXR agonist-inhibited HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Receptores X do Fígado/metabolismo , Neoplasias Hepáticas/patologia , Receptores ErbB/metabolismo , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação ao Cálcio
12.
Front Oncol ; 12: 1006340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300093

RESUMO

Prostate cancer (PCa) is the most common cancer in men in the United States. About 10 - 20% of PCa progress to castration-resistant PCa (CRPC), which is accompanied by metastasis and therapeutic resistance. Aldehyde dehydrogenase (ALDH) is famous as a marker of cancer stem-like cells in different cancer types, including PCa. Generally, ALDHs catalyze aldehyde oxidation into less toxic carboxylic acids and give cancers a survival advantage by reducing oxidative stress caused by aldehyde accumulation. In PCa, the expression of ALDHs is associated with a higher tumor stage and more lymph node metastasis. Functionally, increased ALDH activity makes PCa cells gain more capabilities in self-renewal and metastasis and reduces the sensitivity to castration and radiotherapy. Therefore, it is promising to target ALDH or ALDHhigh cells to eradicate PCa. However, challenges remain in moving the ALDH inhibitors to PCa therapy, potentially due to the toxicity of pan-ALDH inhibitors, the redundancy of ALDH isoforms, and the lack of explicit understanding of the metabolic signaling transduction details. For targeting PCa stem-like cells (PCSCs), different regulators have been revealed in ALDHhigh cells to control cell proliferation and tumorigenicity. ALDH rewires essential signaling transduction in PCa cells. It has been shown that ALDHs produce retinoic acid (RA), bind with androgen, and modulate diverse signaling. This review summarizes and discusses the pathways directly modulated by ALDHs, the crucial regulators that control the activities of ALDHhigh PCSCs, and the recent progress of ALDH targeted therapies in PCa. These efforts will provide insight into improving ALDH-targeted treatment.

14.
Bio Protoc ; 11(22): e4231, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34909452

RESUMO

Bone metastasis is a frequent and lethal complication of many cancer types (i.e., prostate cancer, breast cancer, and multiple myeloma), and a cure for bone metastasis remains elusive. To recapitulate the process of bone metastasis and understand how cancer cells metastasize to bone, intracardiac injection and intracaudal arterial animal models were developed. The intratibial injection animal model was established to investigate the communication between cancer cells and the bone microenvironment and to mimic the setting of prostate cancer patients with bone metastasis. Given that detailed protocols of intratibial injection and its quantitative analysis are still insufficient, in this protocol, we provide hands-on procedures for how to prepare cells, perform the tibial injection, monitor tibial tumor growth, and quantitatively evaluate the tibial tumors in pathological samples. This manuscript provides a ready-to-use experimental protocol for investigating cancer cell behaviors in bone and developing novel therapeutic strategies for bone metastatic cancer patients.

15.
Front Pharmacol ; 12: 719750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658858

RESUMO

Atherosclerosis is a major pathology for cardiovascular diseases (CVDs). Clinically, the intermittent fasting (IF) has been observed to reduce the risk of CVDs. However, the effect of IF on the development of atherosclerosis has not been fully elucidated. Herein, we determined the protection of IF against high-fat diet-induced atherosclerosis in pro-atherogenic low-density lipoprotein receptor deficient (LDLR-/-) mice and the potentially involved mechanisms. The LDLR-/- mice were scheduled intermittent fasting cycles of 3-day HFD feeding ad libitum and 1 day fasting, while the mice in the control group were continuously fed HFD. The treatment was lasted for 7 weeks (∼12 cycles) or 14 weeks (∼24 cycles). Associated with the reduced total HFD intake, IF substantially reduced lesions in the en face aorta and aortic root sinus. It also increased plaque stability by increasing the smooth muscle cell (SMC)/collagen content and fibrotic cap thickness while reducing macrophage accumulation and necrotic core areas. Mechanistically, IF reduced serum total and LDL cholesterol levels by inhibiting cholesterol synthesis in the liver. Meanwhile, HFD-induced hepatic lipid accumulation was attenuated by IF. Interestingly, circulating Ly6Chigh monocytes but not T cells and serum c-c motif chemokine ligand 2 levels were significantly reduced by IF. Functionally, adhesion of monocytes to the aortic endothelium was decreased by IF via inhibiting VCAM-1 and ICAM-1 expression. Taken together, our study indicates that IF reduces atherosclerosis in LDLR-/- mice by reducing monocyte chemoattraction/adhesion and ameliorating hypercholesterolemia and suggests its potential application for atherosclerosis treatment.

16.
Cell Death Discov ; 7(1): 165, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34226512

RESUMO

Regulatory T cells (Tregs), which characteristically express forkhead box protein 3 (Foxp3), are essential for the induction of immune tolerance. Here, we investigated microRNA-146a (miR-146a), a miRNA that is widely expressed in Tregs and closely related to their homeostasis and function, with the aim of enhancing the function of Tregs by regulating miR-146a and then suppressing transplant rejection. The effect of the absence of miR-146a on Treg function in the presence or absence of rapamycin was detected in both a mouse heart transplantation model and cell co-cultures in vitro. The absence of miR-146a exerted a mild tissue-protective effect by transiently prolonging allograft survival and reducing the infiltration of CD4+ and CD8+ T cells into the allografts. Meanwhile, the absence of miR-146a increased Treg expansion but impaired the ability of Tregs to restrict T helper cell type 1 (Th1) responses. A miR-146a deficiency combined with interferon (IFN)-γ blockade repaired the impaired Treg function, further prolonged allograft survival, and alleviated rejection. Importantly, miR-146a regulated Tregs mainly through the IFN-γ/signal transducer and activator of transcription (STAT) 1 pathway, which is implicated in Treg function to inhibit Th1 responses. Our data suggest miR-146a controls a specific aspect of Treg function, and modulation of miR-146a may enhance Treg efficacy in alleviating heart transplant rejection in mice.

17.
Cell Immunol ; 367: 104400, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34214903

RESUMO

Regulatory T cells (Tregs) are indispensable for the maintenance of immune tolerance. The purpose of this study was to investigate the effect of the interaction of the lncRNA PVT1 and miR-146a on Treg autophagy and reveal the mechanism to alleviate transplant rejection. PVT1 and miR-146a expression levels were analyzed by qRT-PCR. Bioinformatic analysis and methylation profiling were used to determine the relationship between PVT1 and miR-146a. Altered autophagic status in Tregs was detected by western blotting. The effect of autophagy on Treg function was assessed in cell coculture in vitro and in animal models. Our results showed that PVT1 expression was reduced in Tregs during rejection and negatively correlated with miR-146a expression. Higher PVT1 expression was associated with higher autophagy in Tregs. Further, highly autophagic Tregs had stronger inhibitory effects on CD4+ T cells in vitro, prolonged allograft survival and alleviated rejection in vivo. Mechanistic studies showed that overexpression of PVT1 enhanced TNF receptor-associated factor (TRAF) 6 expression by directly targeting miR-146a. MiR-146a overexpression reversed PVT1-induced Treg autophagy and inhibited PVT1-induced TRAF6 expression. The present study shows a novel regulatory pathway of the autophagy program that comprises PVT1, miR-146a, and TRAF6. Our findings may provide potential targets and new therapeutic strategies for transplant rejection.


Assuntos
Rejeição de Enxerto/imunologia , Transplante de Coração , MicroRNAs/genética , RNA Longo não Codificante/genética , Linfócitos T Reguladores/imunologia , Animais , Autofagia , Células Cultivadas , Rejeição de Enxerto/genética , Humanos , Tolerância Imunológica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo
18.
Transpl Immunol ; 67: 101411, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34020045

RESUMO

Organ transplantation is the preferred treatment option for end-stage organ failure. Although immunosuppressants are effective for preventing the occurrence of acute rejection, they also cause a series of side effects in transplant recipients. To improve the quality of patient survival, a new therapeutic strategy that has fewer side effects than current immunosuppressive regimens and can induce allograft immune tolerance and effectively prevent transplant rejection is needed. In this context, regulatory T cells (Tregs) are considered to be promising research targets. With the increasing understanding of the immunomodulatory role of Tregs, the use of Treg-based cellular therapies has shifted from prevention/treatment of autoimmune diseases to clinical trials for organ transplantation. This review describes the phenotype and in vitro expansion of Tregs and the mechanisms by which they exert immunomodulatory effects in transplantation immunity, highlights recent clinical trial data on Treg-based cellular therapies in transplantation, and describes future directions and limitations.


Assuntos
Rejeição de Enxerto/imunologia , Imunoterapia Adotiva/métodos , Transplante de Órgãos , Linfócitos T Reguladores/imunologia , Animais , Ensaios Clínicos como Assunto , Rejeição de Enxerto/terapia , Sobrevivência de Enxerto , Humanos , Imunomodulação , Linfócitos T Reguladores/transplante , Tolerância ao Transplante
19.
Cancers (Basel) ; 13(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671634

RESUMO

Molecular signatures predictive of recurrence-free survival (RFS) and castration resistance are critical for treatment decision-making in prostate cancer (PCa), but the robustness of current signatures is limited. Here, we applied the Robust Rank Aggregation (RRA) method to PCa transcriptome profiles and identified 287 genes differentially expressed between localized castration-resistant PCa (CRPC) and hormone-sensitive PCa (HSPC). Least absolute shrinkage and selection operator (LASSO) and stepwise Cox regression analyses of the 287 genes developed a 6-gene signature predictive of RFS in PCa. This signature included NPEPL1, VWF, LMO7, ALDH2, NUAK1, and TPT1, and was named CRPC-derived prognosis signature (CRPCPS). Interestingly, three of these 6 genes constituted another signature capable of distinguishing CRPC from HSPC. The CRPCPS predicted RFS in 5/9 cohorts in the multivariate analysis and remained valid in patients stratified by tumor stage, Gleason score, and lymph node status. The signature also predicted overall survival and metastasis-free survival. The signature's robustness was demonstrated by the C-index (0.55-0.74) and the calibration plot in all nine cohorts and the 3-, 5-, and 8-year area under the receiver operating characteristic curve (0.67-0.77) in three cohorts. The nomogram analyses demonstrated CRPCPS' clinical applicability. The CRPCPS thus appears useful for RFS prediction in PCa.

20.
Nat Commun ; 12(1): 1714, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731701

RESUMO

Advanced prostate cancer (PCa) often develops bone metastasis, for which therapies are very limited and the underlying mechanisms are poorly understood. We report that bone-borne TGF-ß induces the acetylation of transcription factor KLF5 in PCa bone metastases, and acetylated KLF5 (Ac-KLF5) causes osteoclastogenesis and bone metastatic lesions by activating CXCR4, which leads to IL-11 secretion, and stimulating SHH/IL-6 paracrine signaling. While essential for maintaining the mesenchymal phenotype and tumorigenicity, Ac-KLF5 also causes resistance to docetaxel in tumors and bone metastases, which is overcome by targeting CXCR4 with FDA-approved plerixafor. Establishing a mechanism for bone metastasis and chemoresistance in PCa, these findings provide a rationale for treating chemoresistant bone metastasis of PCa with inhibitors of Ac-KLF5/CXCR4 signaling.


Assuntos
Neoplasias Ósseas/secundário , Carcinogênese , Transição Epitelial-Mesenquimal , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Acetilação , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzilaminas/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Ciclamos/uso terapêutico , Docetaxel/uso terapêutico , Humanos , Interleucina-11/genética , Interleucina-11/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Mutação , Osteogênese , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...