Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542881

RESUMO

RNAs play crucial roles in various essential biological functions, including catalysis and gene regulation. Despite the widespread use of coarse-grained (CG) models/simulations to study RNA 3D structures and dynamics, their direct application is challenging due to the lack of atomic detail. Therefore, the reconstruction of full atomic structures is desirable. In this study, we introduced a straightforward method called ABC2A for reconstructing all-atom structures from RNA CG models. ABC2A utilizes diverse nucleotide fragments from known structures to assemble full atomic structures based on the CG atoms. The diversification of assembly fragments beyond standard A-form ones, commonly used in other programs, combined with a highly simplified structure refinement process, ensures that ABC2A achieves both high accuracy and rapid speed. Tests on a recent large dataset of 361 RNA experimental structures (30-692 nt) indicate that ABC2A can reconstruct full atomic structures from three-bead CG models with a mean RMSD of ~0.34 Å from experimental structures and an average runtime of ~0.5 s (maximum runtime < 2.5 s). Compared to the state-of-the-art Arena, ABC2A achieves a ~25% improvement in accuracy and is five times faster in speed.


Assuntos
Simulação de Dinâmica Molecular , RNA , RNA/química , Nucleotídeos
2.
Pain ; 165(4): 908-921, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851391

RESUMO

ABSTRACT: Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein-protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug-target interaction network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor data sets from a pool of more than 1000 targets in the PPI network. We employ 3 distinct machine learning algorithms combined with advanced natural language processing (NLP)-based embeddings, specifically pretrained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of more than 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. In addition, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.


Assuntos
Canais de Sódio Disparados por Voltagem , Humanos , Canais de Sódio Disparados por Voltagem/metabolismo , Dor/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
3.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38019732

RESUMO

Drug repositioning, the strategy of redirecting existing drugs to new therapeutic purposes, is pivotal in accelerating drug discovery. While many studies have engaged in modeling complex drug-disease associations, they often overlook the relevance between different node embeddings. Consequently, we propose a novel weighted local information augmented graph neural network model, termed DRAGNN, for drug repositioning. Specifically, DRAGNN firstly incorporates a graph attention mechanism to dynamically allocate attention coefficients to drug and disease heterogeneous nodes, enhancing the effectiveness of target node information collection. To prevent excessive embedding of information in a limited vector space, we omit self-node information aggregation, thereby emphasizing valuable heterogeneous and homogeneous information. Additionally, average pooling in neighbor information aggregation is introduced to enhance local information while maintaining simplicity. A multi-layer perceptron is then employed to generate the final association predictions. The model's effectiveness for drug repositioning is supported by a 10-times 10-fold cross-validation on three benchmark datasets. Further validation is provided through analysis of the predicted associations using multiple authoritative data sources, molecular docking experiments and drug-disease network analysis, laying a solid foundation for future drug discovery.


Assuntos
Benchmarking , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Descoberta de Drogas , Redes Neurais de Computação
4.
ArXiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37502628

RESUMO

Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein-protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug-target interaction (DTI) network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor datasets from a pool of over 1,000 targets in the PPI network. We employ three distinct machine learning algorithms combined with advanced natural language processing (NLP)-based embeddings, specifically pre-trained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of over 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. Additionally, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.

5.
Chem Rev ; 123(13): 8736-8780, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384816

RESUMO

Small data are often used in scientific and engineering research due to the presence of various constraints, such as time, cost, ethics, privacy, security, and technical limitations in data acquisition. However, big data have been the focus for the past decade, small data and their challenges have received little attention, even though they are technically more severe in machine learning (ML) and deep learning (DL) studies. Overall, the small data challenge is often compounded by issues, such as data diversity, imputation, noise, imbalance, and high-dimensionality. Fortunately, the current big data era is characterized by technological breakthroughs in ML, DL, and artificial intelligence (AI), which enable data-driven scientific discovery, and many advanced ML and DL technologies developed for big data have inadvertently provided solutions for small data problems. As a result, significant progress has been made in ML and DL for small data challenges in the past decade. In this review, we summarize and analyze several emerging potential solutions to small data challenges in molecular science, including chemical and biological sciences. We review both basic machine learning algorithms, such as linear regression, logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), kernel learning (KL), random forest (RF), and gradient boosting trees (GBT), and more advanced techniques, including artificial neural network (ANN), convolutional neural network (CNN), U-Net, graph neural network (GNN), Generative Adversarial Network (GAN), long short-term memory (LSTM), autoencoder, transformer, transfer learning, active learning, graph-based semi-supervised learning, combining deep learning with traditional machine learning, and physical model-based data augmentation. We also briefly discuss the latest advances in these methods. Finally, we conclude the survey with a discussion of promising trends in small data challenges in molecular science.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Algoritmos , Fontes de Energia Elétrica , Redes Neurais de Computação
6.
Molecules ; 28(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37375388

RESUMO

DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Proteínas/química , DNA/química , RNA/química , Dobramento de Proteína
7.
NAR Genom Bioinform ; 5(1): lqad016, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36879898

RESUMO

Knowledge-based statistical potentials are very important for RNA 3-dimensional (3D) structure prediction and evaluation. In recent years, various coarse-grained (CG) and all-atom models have been developed for predicting RNA 3D structures, while there is still lack of reliable CG statistical potentials not only for CG structure evaluation but also for all-atom structure evaluation at high efficiency. In this work, we have developed a series of residue-separation-based CG statistical potentials at different CG levels for RNA 3D structure evaluation, namely cgRNASP, which is composed of long-ranged and short-ranged interactions by residue separation. Compared with the newly developed all-atom rsRNASP, the short-ranged interaction in cgRNASP was involved more subtly and completely. Our examinations show that, the performance of cgRNASP varies with CG levels and compared with rsRNASP, cgRNASP has similarly good performance for extensive types of test datasets and can have slightly better performance for the realistic dataset-RNA-Puzzles dataset. Furthermore, cgRNASP is strikingly more efficient than all-atom statistical potentials/scoring functions, and can be apparently superior to other all-atom statistical potentials and scoring functions trained from neural networks for the RNA-Puzzles dataset. cgRNASP is available at https://github.com/Tan-group/cgRNASP.

8.
J Chem Inf Model ; 63(5): 1472-1489, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36826415

RESUMO

Drug addiction is a global public health crisis, and the design of antiaddiction drugs remains a major challenge due to intricate mechanisms. Since experimental drug screening and optimization are too time-consuming and expensive, there is urgent need to develop innovative artificial intelligence (AI) methods for addressing the challenge. We tackle this challenge by topology-inferred drug addiction learning (TIDAL) built from integrating multiscale topological Laplacians, deep bidirectional transformer, and ensemble-assisted neural networks (EANNs). Multiscale topological Laplacians are a novel class of algebraic topology tools that embed molecular topological invariants and algebraic invariants into its harmonic spectra and nonharmonic spectra, respectively. These invariants complement sequence information extracted from a bidirectional transformer. We validate the proposed TIDAL framework on 22 drug addiction related, 4 hERG, and 12 DAT data sets, which suggests that the proposed TIDAL is a state-of-the-art framework for the modeling and analysis of drug addiction data. We carry out cross-target analysis of the current drug addiction candidates to alert their side effects and identify their repurposing potentials. Our analysis reveals drug-mediated linear and bilinear target correlations. Finally, TIDAL is applied to shed light on relative efficacy, repurposing potential, and potential side effects of 12 existing antiaddiction medications. Our results suggest that TIDAL provides a new computational strategy for pressingly needed antisubstance addiction drug development.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Transtornos Relacionados ao Uso de Substâncias , Humanos , Inteligência Artificial , Algoritmos , Redes Neurais de Computação , Desenvolvimento de Medicamentos
9.
PLoS Comput Biol ; 18(10): e1010501, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36260618

RESUMO

The three-dimensional (3D) structure and stability of DNA are essential to understand/control their biological functions and aid the development of novel materials. In this work, we present a coarse-grained (CG) model for DNA based on the RNA CG model proposed by us, to predict 3D structures and stability for both dsDNA and ssDNA from the sequence. Combined with a Monte Carlo simulated annealing algorithm and CG force fields involving the sequence-dependent base-pairing/stacking interactions and an implicit electrostatic potential, the present model successfully folds 20 dsDNAs (≤52nt) and 20 ssDNAs (≤74nt) into the corresponding native-like structures just from their sequences, with an overall mean RMSD of 3.4Å from the experimental structures. For DNAs with various lengths and sequences, the present model can make reliable predictions on stability, e.g., for 27 dsDNAs with/without bulge/internal loops and 24 ssDNAs including pseudoknot, the mean deviation of predicted melting temperatures from the corresponding experimental data is only ~2.0°C. Furthermore, the model also quantificationally predicts the effects of monovalent or divalent ions on the structure stability of ssDNAs/dsDNAs.


Assuntos
DNA , RNA , Conformação de Ácido Nucleico , RNA/química , DNA de Cadeia Simples , Íons
10.
Front Genet ; 12: 746181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721533

RESUMO

Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multiple historical information to predict the current time information. It can enhance the long-term memory ability. At the same time, for the time direction, it can improve the correlation of states at different moments. To include the historical information, we design two different processing methods for the SS-RNN in continuous and discontinuous ways, respectively. For each method, there are two ways for historical information addition: 1) direct addition and 2) adding weight weighting and function mapping to activation function. It provides six pathways so as to fully and deeply explore the effect and influence of historical information on the RNNs. By comparing the average accuracy of real datasets with long short-term memory, Bi-LSTM, gated recurrent units, and MCNN and calculating the main indexes (Accuracy, Precision, Recall, and F1-score), it can be observed that our method can improve the average accuracy and optimize the structure of the recurrent neural network and effectively solve the problems of exploding and vanishing gradients.

11.
Front Bioinform ; 1: 809082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36303785

RESUMO

The 3D architectures of RNAs are essential for understanding their cellular functions. While an accurate scoring function based on the statistics of known RNA structures is a key component for successful RNA structure prediction or evaluation, there are few tools or web servers that can be directly used to make comprehensive statistical analysis for RNA 3D structures. In this work, we developed RNAStat, an integrated tool for making statistics on RNA 3D structures. For given RNA structures, RNAStat automatically calculates RNA structural properties such as size and shape, and shows their distributions. Based on the RNA structure annotation from DSSR, RNAStat provides statistical information of RNA secondary structure motifs including canonical/non-canonical base pairs, stems, and various loops. In particular, the geometry of base-pairing/stacking can be calculated in RNAStat by constructing a local coordinate system for each base. In addition, RNAStat also supplies the distribution of distance between any atoms to the users to help build distance-based RNA statistical potentials. To test the usability of the tool, we established a non-redundant RNA 3D structure dataset, and based on the dataset, we made a comprehensive statistical analysis on RNA structures, which could have the guiding significance for RNA structure modeling. The python code of RNAStat, the dataset used in this work, and corresponding statistical data files are freely available at GitHub (https://github.com/RNA-folding-lab/RNAStat).

12.
Phys Rev E ; 101(1-1): 012405, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069597

RESUMO

Apart from intrinsic stochastic variability, gene expression also involves stochastic reaction delay arising from heterogeneity and fluctuation processes, which can affect the efficiency of reactants (e.g., mRNA or protein) in exploring their environments. In contrast to the former that has been extensively investigated, the impact of the latter on gene expression remains not fully understood. Here, we analyze a non-Markovian model of bursty gene expression with general delay distribution. We analytically find that the effect of stochastic reaction delay is equivalent to the introduction of negative feedback, and stationary protein distribution only depends on the mean of the delay and is independent of its distribution. We numerically show that the stochastic reaction delay always slightly amplifies the mean protein level but remarkably reduces the protein noise (quantified by the ratio of the variance over the squared average). Our analysis indicates that stochastic reaction delay is an important factor affecting gene expression.


Assuntos
Regulação da Expressão Gênica , Modelos Genéticos , Processos Estocásticos
13.
J Chem Phys ; 151(16): 165101, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675878

RESUMO

As an extremely common structural motif, RNA hairpins with bulge loops [e.g., the human immunodeficiency virus type 1 (HIV-1) transactivation response (TAR) RNA] can play essential roles in normal cellular processes by binding to proteins and small ligands, which could be very dependent on their three-dimensional (3D) structures and stability. Although the structures and conformational dynamics of the HIV-1 TAR RNA have been extensively studied, there are few investigations on the thermodynamic stability of the TAR RNA, especially in ion solutions, and the existing studies also have some divergence on the unfolding process of the RNA. Here, we employed our previously developed coarse-grained model with implicit salt to predict the 3D structure, stability, and unfolding pathway for the HIV-1 TAR RNA over a wide range of ion concentrations. As compared with the extensive experimental/theoretical results, the present model can give reliable predictions on the 3D structure stability of the TAR RNA from the sequence. Based on the predictions, our further comprehensive analyses on the stability of the TAR RNA as well as its variants revealed that the unfolding pathway of an RNA hairpin with a bulge loop is mainly determined by the relative stability between different states (folded state, intermediate state, and unfolded state) and the strength of the coaxial stacking between two stems in folded structures, both of which can be apparently modulated by the ion concentrations as well as the sequences.


Assuntos
HIV-1/química , Conformação de Ácido Nucleico , RNA Viral/química , Íons/química , Modelos Moleculares , Soluções
14.
Phys Rev E ; 100(1-1): 012128, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499786

RESUMO

The activation of a gene is a complex biochemical process and could involve small steps, creating a memory between individual events. However, the effect of this molecular memory was often neglected in previous work. How the molecular memory affects gene expression remains not fully explored. We analyze a stochastic model of bursty gene expression, where the waiting time from inactivation to activation is assumed to follow a nonexponential (in fact, Erlang) distribution. We derive the analytical expression for the gene-product distribution, which explicitly traces the effect of molecule memory. Interestingly, we find that the effect of molecular memory is equivalent to the introduction of feedback. In addition, we analytically show that the stationary distribution is always super-Poissonian, independent of the detail of the waiting-time distribution, and there is the optimal step size that minimizes the Fano factor for any given mean burst size and is a decreasing function of the mean burst size. These analytical results indicate that molecular memory is an unneglectable factor affecting gene expression.


Assuntos
Regulação da Expressão Gênica , Modelos Genéticos , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...