Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 14(14): 2479-2484, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30939230

RESUMO

The motion of catalytic tubular micromotors are driven by the oxygen bubbles generated from chemical reaction and is influenced by the resistance from the liquid environment. Herein, we fabricated a rolled-up graphene tubular micromotor, in which the graphene layer was adopted as the outmost surface. Due to the hydrophobic property of the graphene layer, the fabricated micromotor performed a motion pattern that could escape from the attraction from the bubbles. In addition, Escherichia coli and Staphylococcus culture experiments proved that the graphene outer surface displays antibacterial property. Considering the bubble-avoiding and antibacterial properties, the rolled-up graphene tubular micromotor holds great potential for various applications such as in vivo drug delivery and biosensors.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Grafite/química , Técnicas Analíticas Microfluídicas , Staphylococcus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Testes de Sensibilidade Microbiana , Técnicas Analíticas Microfluídicas/instrumentação , Tamanho da Partícula , Propriedades de Superfície
2.
Nanotechnology ; 30(35): 354001, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31035266

RESUMO

Pyrolysis, which involves thermal decomposition of materials at elevated temperatures, has been commonly applied in the chemical industry. Here we explored the pyrolysis process for 3D nanofabrication. By strain engineering of nanomembranes on a thermal responsive polymer as the sacrificial layer, we demonstrated that diverse 3D rolled-up microstructures with different functions could be achieved without any additional solution and drying process. We carefully studied the effect of molecular weight of the polymer in the pyrolysis process and identified that the rapid breakdown of molecular backbone to a monomer is the key for nanomembrane releasing and rolling. Preferential rolling direction and corresponding dynamics were studied by analyzing the real-time video of the rolling process. We further demonstrated the versatile functions of the fabricated 3D structures as catalytic microengines and optical resonators. The simple fabrication methodology developed here may have great potential in producing functional 3D tubular micro-/nanostructures.

3.
Small ; 15(23): e1805477, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31026126

RESUMO

On-chip strain engineering is highly demanded in 2D materials as an effective route for tuning their extraordinary properties and integrating consistent functionalities toward various applications. Herein, rolling technique is proposed for strain engineering in monolayer graphene grown on a germanium substrate, where compressive or tensile strain could be acquired, depending on the designed layer stressors. Unusual compressive strains up to 0.30% are achieved in the rolled-up graphene tubular structures. The subsequent phonon hardening under compressive loading is observed through strain-induced Raman G band splitting, while distinct blueshifts of characteristic peaks (G+ , G- , or 2D) can be well regulated on an asymmetric tubular structure with a strain variation. In addition, due to the strong confinement of the local electromagnetic field under 3D tubular geometry, the photon-phonon interaction is highly strengthened, and thus, the Raman scattering of graphene in rolled-up tubes is enhanced. Such an on-chip rolling approach leads to a superior strain tuning method in 2D materials and could improve their light-matter interaction in a tubular configuration, which may hold great capability in 2D materials integration for on-chip applications such as in mechanics, electronics, and photonics.

4.
ACS Appl Mater Interfaces ; 10(9): 7704-7708, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29436813

RESUMO

We demonstrate hyperbolic metamaterials (HMMs) on a curved surface for an efficient outcoupling of nonradiative modes, which lead to an enhanced spontaneous emission. Those high-wavevector plasmonic modes can propagate along the curved structure and emit into the far field, realizing a directional light emission with maximal fluorescent intensity. Detailed simulations disclose a high Purcell factor and a spatial power distribution in the curved HMM, which agrees with the experimental result. Our work presents remarkable enhancing capability in both the Purcell factor and emission intensity, which could suggest a unique structure design in metamaterials for potential application in, e.g., high-speed optical sensing and communications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...