Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(1): 1399-1412, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35917075

RESUMO

Wastewater containing quinoline has become a common pollutant in water and soil environments, which poses a threat to human health due to its carcinogenicity, teratogenicity, and mutagenicity. Quinoline's stability and toxicity hinders its degradation by conventional physicochemical and biological methods. In this contribution, Fe-Co-Bi/kaolin particle electrodes were prepared for the efficient degradation of quinoline in wastewater, and characterized by using scanning electron microscope, X-ray diffraction, pyridine-IR, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, and four-probe resistivity test. Parameters affecting the degradation efficiency were optimized to be the particle electrode dosage of 40 g/L, pH 3.5, H2O2 addition of 67.6 mmol/L, electrical conductivity of 12.7 ms/cm, and voltage of 20 V. The constructed three-dimensional catalytic particle electrode system (3D-CPE) achieved 92.1% removal rate of chemical oxygen demand (COD) under the optimal conditions. Hydroxyl radicals (•OH) generated in the 3D-CPE process were identified by radical scavenging tests and electron spin response analysis. To unravel the degradation mechanism, the intermediate products were identified by using high performance liquid chromatography-mass spectrometry. The degradation mechanism was discussed with the help of theoretical calculation.


Assuntos
Quinolinas , Poluentes Químicos da Água , Humanos , Águas Residuárias , Caulim , Peróxido de Hidrogênio/química , Eletrodos , Quinolinas/análise , Poluentes Químicos da Água/análise , Oxirredução
2.
Dev Biol ; 374(1): 198-209, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23165293

RESUMO

The cardiac homeobox gene Nkx2.5 plays a key and dosage-sensitive role in the differentiation of outflow tract and right ventricle from progenitors of the second heart field (SHF) and Nkx2.5 mutation is strongly associated with human outflow tract congenital heart disease (OFT CHD). Therefore defining the regulatory mechanisms controlling Nkx2.5 expression in SHF populations serves an important function in understanding the etiology of complex CHD. Through a comparative analysis of regulatory elements controlling SHF expression of Nkx2.5 in the chicken and mouse, we have found evidence that Nkx2.5 autoregulation is important for maintaining Nkx2.5 expression during SHF differentiation in both species. However the mechanism of Nkx2.5 maintenance differs between placental mammals and non-mammalian vertebrates: in chick Nkx2.5 binds directly to a genomic enhancer element that is required to maintain Nkx2.5 expression in the SHF. In addition, it is likely that this is true in other non-mammalian vertebrates given that they possess a similar genomic organization. By contrast, in placental mammals, Nkx2.5 autoregulation in the SHF functions indirectly through Mef2c. These data underscore a tight relationship in mammals between Nkx2.5 and Mef2c in SHF transcriptional regulation, and highlight the potential for evolutionary cis-regulatory analysis to identify core, conserved components of the gene networks controlling heart development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Miocárdio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Galinhas , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Vetores Genéticos , Insuficiência Cardíaca/congênito , Insuficiência Cardíaca/metabolismo , Proteína Homeobox Nkx-2.5 , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Células Musculares/citologia , Homologia de Sequência do Ácido Nucleico , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...