Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 675: 36-51, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964123

RESUMO

The defects formed by N doping always coexist with pyrrole nitrogen (Po) and pyridine nitrogen (Pd), and the synergistic mechanisms of H2O2 production and PMS activation between the different Po: Pd are unknown. This paper synthesized MOF-derived carbon materials with different nitrogen-type ratios as cathode materials in an electro-Fenton system using precursors with different nitrogen-containing functional groups. Several catalysts with different Po: Pd ratios (0:4, 1:3, 2:2, 3:1, 4:0) were prepared, and the best catalyst for LEV degradation was FC-CN (Po: Pd=3:1). X-ray Photoelectron Spectroscopy (XPS) and density-functional theory (DFT) calculations show that the introduction of nitrogen creates an interfacial micro-electric field (IMEF) in the carbon layer and the metal, accelerates the electron transfer from the carbon layer to the Co atoms, and promotes cycling between the Fe3+/Co2+ redox pairs, with the electron transfer reaching a maximum at Po: Pd = 3:1. FC-CN (Po: Pd=3:1) achieved more than 95 % LEV degradation in 90 min at pH = 3-9, with a lower energy consumption of 0.11 kWh m-3 order-1. and the energy consumption of the catalyst for LEV degradation is lower than that of those catalysts reported. In addition, the degradation pathway of LEV was proposed based on UPLC-MS and Fukui function. This study offers some valuable information for the application of MOF derivatives.

2.
Environ Sci Technol ; 58(27): 12091-12100, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38916160

RESUMO

The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O22-). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h-1 g-1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2-CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments.


Assuntos
Ozônio , Ozônio/química , Catálise , Carbono/química , Compostos de Manganês/química , Cério/química , Óxidos/química
3.
J Colloid Interface Sci ; 668: 551-564, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691964

RESUMO

To reveal the mechanism of charge transfer between interfaces of BiVO4-based heterogeneous materials in photoelectrochemical water splitting system, the cocatalyst was grown in situ using tannic acid (TA) as a ligand and Fe and Co ions as metal centers (TAFC), and then uniformly and ultra-thinly coated on BiVO4 to form photoanodes. The results show that the BiVO4/TAFC achieves a superior photocurrent density (4.97 mA cm-2 at 1.23 VRHE). The charge separation and charge injection efficiencies were also significantly higher, 82.0 % and 78.9 %, respectively. From XPS, UPS, KPFM, and density functional theory calculations, Ligand-to-metal charge transfer (LMCT) acts as an electron transport highway in TAFC ultrathin layer to promote the concentration of electrons towards metal center, leading to an increase in the work function, which enhances the built-in electric field and further improves the charge transport. This study demonstrated that the LMCT pathway on TA-metal complexes enhances the built-in electric field in BiVO4/TAFC to promote charge transport and thus enhance water oxidation, providing a new understanding of the performance improvement mechanism for the surface-modified composite photoanodes.

4.
Environ Sci Technol ; 58(9): 4404-4414, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38310571

RESUMO

Photocatalytic oxidation has gained great interest in environmental remediation, but it is still limited by its low efficiency and catalytic deactivation in the degradation of aromatic VOCs. In this study, we concurrently regulated the surface hydroxyl and oxygen vacancies by introducing Al into ZnSn layered double hydroxide (LDH). The presence of distorted Al species induced local charge redistribution, leading to the remarkable formation of oxygen vacancies. These oxygen vacancies subsequently increased the amount of surface hydroxyl and elongated its bond length. The synergistic effects of surface hydroxyl and oxygen vacancies greatly enhanced reactant adsorption-activation and facilitated charge transfer to generate •OH, •O2-, and 1O2, resulting in highly efficient oxidation and ring-opening of various aromatic VOCs. Compared with commercial TiO2, the optimized ZnSnAl-50 catalyst exhibited about 2-fold activity for the toluene and styrene degradation and 10-fold activity for the chlorobenzene degradation. Moreover, ZnSnAl-50 demonstrated exceptional stability in the photocatalytic oxidation of toluene under a wide humidity range of 0-75%. This work marvelously improves the photocatalytic efficiency, stability, and adaptability through a novel strategy of surface hydroxyl and oxygen vacancies engineering.


Assuntos
Radical Hidroxila , Oxigênio , Adsorção , Oxirredução , Tolueno
5.
Materials (Basel) ; 16(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687552

RESUMO

NOx emission from the cement industry have received much attention. In order to reduce the NOx emission in cement kilns, nickel slag was used to prepare the non-ammonia denitrification material, and a denitrification mechanism was proposed in this study. The results showed that the denitrification material prepared at pH 7 exhibited the best denitrification performance. At low temperature, the highest denitrification performance was achieved between 200 and 300 °C with a NO decomposition rate of approximately 40%. Then, the NO decomposition rate increased as the temperature increased, reaching over 95% above 700 °C. The physicochemical characteristics showed that the material had the highest specific surface area and the highest relative Fe content, which benefited the denitrification performance. The divalent iron of the denitrification material was considered the active site for the reaction, and trivalent iron was not conducive to denitrification performance at a low temperature range. After the denitrification reaction, the Fe3+/Fe2+ increased from 0.89 to 1.31. The proposed denitrification mechanism was the redox process between divalent iron and trivalent iron. This study not only recycles industrial waste to reduce solid waste pollution but also efficiently removes nitrogen oxides from cement kilns without ammonia.

6.
Environ Sci Technol ; 57(17): 7041-7050, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37078822

RESUMO

Ozone catalytic oxidation (OZCO) has gained great interest in environmental remediation while it still faces a big challenge during the deep degradation of refractory volatile organic compounds (VOCs) at room temperature. Hydroxylation of the catalytic surface provides a new strategy for regulating the catalytic activity to boost VOC degradation. Herein, OZCO of toluene at room temperature over hydroxyl-mediated MnOx/Al2O3 catalysts was originally demonstrated. Specifically, a novel hydroxyl-mediated MnOx/Al2O3 catalyst was developed via the in situ AlOOH reconstruction method and used for toluene OZCO. The toluene degradation performance of MnOx/Al2O3 was significantly superior to those of most of the state-of-the-art catalysts, and 100% toluene was removed with an excellent mineralization rate (82.3%) and catalytic stability during OZCO. ESR and in situ DRIFTs results demonstrated that surface hydroxyl groups (HGs) greatly improved the reactive oxygen species generation, thus dramatically accelerating the benzene ring breakage and deep mineralization. Furthermore, HGs provided anchoring sites for uniformly dispersing MnOx and greatly enhanced toluene adsorption and ozone activation. This work paves a way for deep decomposition of aromatic VOCs at room temperature.


Assuntos
Ozônio , Óxidos , Temperatura , Tolueno , Oxirredução , Radical Hidroxila , Catálise
7.
Environ Sci Technol ; 57(46): 17727-17736, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36862670

RESUMO

Ozone (O3) pollution is highly detrimental to human health and the ecosystem due to it being ubiquitous in ambient air and industrial processes. Catalytic decomposition is the most efficient technology for O3 elimination, while the moisture-induced low stability represents the major challenge for its practical applications. Here, activated carbon (AC) supported δ-MnO2 (Mn/AC-A) was facilely synthesized via mild redox in an oxidizing atmosphere to obtain exceptional O3 decomposition capacity. The optimal 5Mn/AC-A achieved nearly 100% of O3 decomposition at a high space velocity (1200 L g-1 h-1) and remained extremely stable under entire humidity conditions. The functionalized AC provided well-designed protection sites to inhibit the accumulation of water on δ-MnO2. Density functional theory (DFT) calculations confirmed that the abundant oxygen vacancies and a low desorption energy of intermediate peroxide (O22-) can significantly boost O3 decomposition activity. Moreover, a kilo-scale 5Mn/AC-A with low cost (∼1.5 $/kg) was used for the O3 decomposition in practical applications, which could quickly decompose O3 pollution to a safety level below 100 µg m-3. This work offers a simple strategy for the development of moisture-resistant and inexpensive catalysts and greatly promotes the practical application of ambient O3 elimination.


Assuntos
Ozônio , Humanos , Óxidos , Carvão Vegetal , Umidade , Compostos de Manganês , Ecossistema , Oxigênio , Catálise
8.
J Hazard Mater ; 422: 126847, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416698

RESUMO

VOCs abatement has attracted increasing interest because of the detrimental effects on both atmospheric environment and human beings of VOCs. The assistance of ozone has enabled efficient VOCs removal at low temperature. Thereby, catalytic ozonation is considered as one of the most feasible and effective methods for VOCs elimination. This work systematically reviews the emerging advances of catalytic ozonation of different VOCs (i.e., aromatic hydrocarbons, oxygenated VOCs, chlorinated VOCs, sulfur-containing VOCs, and saturated alkanes) over various functional catalysts. General reaction mechanism of catalytic ozonation including both Langmuir-Hinshelwood and Mars-van-Krevelen mechanisms was proposed depending on the reactive oxygen species involving the reactions. The influence of reaction conditions (water vapor and temperature) is fully discussed. This review also introduces the enhanced VOCs oxidation via catalytic ozonation in the ozone-generating systems including plasma and vacuum ultraviolet. Lastly, the existing challenges of VOCs catalytic ozonation are presented, and the perspective of this technology is envisioned.


Assuntos
Ozônio , Poluentes Químicos da Água , Catálise , Humanos , Oxirredução , Temperatura , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...