Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2303289, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640468

RESUMO

Existing methods for studying neural circuits and treating neurological disorders are typically based on physical and chemical cues to manipulate and record neural activities. These approaches often involve predefined, rigid, and unchangeable signal patterns, which cannot be adjusted in real time according to the patient's condition or neural activities. With the continuous development of neural interfaces, conducting in vivo research on adaptive and modifiable treatments for neurological diseases and neural circuits is now possible. In this review, current and potential integration of various modalities to achieve precise, closed-loop modulation, and sensing in neural systems are summarized. Advanced materials, devices, or systems that generate or detect electrical, magnetic, optical, acoustic, or chemical signals are highlighted and utilized to interact with neural cells, tissues, and networks for closed-loop interrogation. Further, the significance of developing closed-loop techniques for diagnostics and treatment of neurological disorders such as epilepsy, depression, rehabilitation of spinal cord injury patients, and exploration of brain neural circuit functionality is elaborated.

2.
Adv Healthc Mater ; 12(29): e2302059, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37610041

RESUMO

Bioadhesive hydrogels have attracted considerable attention as innovative materials in medical interventions and human-machine interface engineering. Despite significant advances in their application, it remains critical to develop adhesive hydrogels that meet the requirements for biocompatibility, biodegradability, long-term strong adhesion, and efficient drug delivery vehicles in moist conditions. A biocompatible, biodegradable, soft, and stretchable hydrogel made from a combination of a biopolymer (unmodified natural gelatin) and stretchable biodegradable poly(ethylene glycol) diacrylate is proposed to achieve durable and tough adhesion and explore its use for convenient and effective intranasal hemostasis and drug administration. Desirable hemostasis efficacy and enhanced therapeutic outcomes for allergic rhinitis are accomplished. Biodegradation enables the spontaneous removal of materials without causing secondary damage and minimizes medical waste. Preliminary trials on human subjects provide an essential foundation for practical applications. This work elucidates material strategies for biodegradable adhesive hydrogels, which are critical to achieving robust material interfaces and advanced drug delivery platforms for novel clinical treatments.


Assuntos
Hidrogéis , Rinite Alérgica , Humanos , Hidrogéis/uso terapêutico , Adesivos , Epistaxe , Aderências Teciduais
3.
Clin Cancer Res ; 28(13): 2830-2843, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35435984

RESUMO

PURPOSE: Since CD7 may represent a potent target for T-lymphoblastic leukemia/lymphoma (T-ALL/LBL) immunotherapy, this study aimed to investigate safety and efficacy of autologous CD7-chimeric antigen receptor (CAR) T cells in patients with relapsed and refractory (R/R) T-ALL/LBL, as well as its manufacturing feasibility. PATIENTS AND METHODS: Preclinical phase was conducted in NPG mice injected with Luc+ GFP+CCRF-CEM cells. Open-label phase I clinical trial (NCT04004637) enrolled patients with R/R CD7-positive T-ALL/LBL who received autologous CD7-CAR T-cell infusion. Primary endpoint was safety; secondary endpoints included efficacy and pharmacokinetic and pharmacodynamic parameters. RESULTS: CD7 blockade strategy was developed using tandem CD7 nanobody VHH6 coupled with an endoplasmic reticulum/Golgi-retention motif peptide to intracellularly fasten CD7 molecules. In preclinical phase CD7 blockade CAR T cells prevented fratricide and exerted potent cytolytic activity, significantly relieving leukemia progression and prolonged the median survival of mice. In clinical phase, the complete remission (CR) rate was 87.5% (7/8) 3 months after CAR T-cell infusion; 1 patient with leukemia achieved minimal residual disease-negative CR and 1 patient with lymphoma achieved CR for more than 12 months. Majority of patients (87.5%) only had grade 1 or 2 cytokine release syndrome with no T-cell hypoplasia or any neurologic toxicities observed. The median maximum concentration of CAR T cells was 857.2 cells/µL at approximately 12 days and remained detectable up to 270 days. CONCLUSIONS: Autologous nanobody-derived fratricide-resistant CD7-CAR T cells demonstrated a promising and durable antitumor response in R/R T-ALL/LBL with tolerable toxicity, warranting further studies in highly aggressive CD7-positive malignancies.


Assuntos
Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos Quiméricos , Animais , Antígenos CD7 , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Anticorpos de Domínio Único/uso terapêutico
4.
Hum Brain Mapp ; 43(4): 1381-1393, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34826160

RESUMO

The Self-Attention Network (SAN) has been proposed to describe the underlying neural mechanism of the self-prioritization effect, yet the roles of the key nodes in the SAN-the left posterior superior temporal sulcus (LpSTS) and the dorsolateral prefrontal cortex (DLPFC)-still need to be clarified. One hundred and nine participants were randomly assigned into the LpSTS group, the DLPFC group, or the sham group. We used the transcranial magnetic stimulation (TMS) technique to selectively disrupt the functions of the corresponding targeted region, and observed its impacts on self-prioritization effect based on the difference between the performance of the self-matching task before and after the targeted stimulation. We analyzed both model-free performance measures and HDDM-based performance measures for the self-matching task. The results showed that the inhibition of LpSTS could lead to reduced performance in processing self-related stimuli, which establishes a causal role for the LpSTS in self-related processing and provide direct evidence to support the SAN framework. However, the results of the DLPFC group from HDDM analysis were distinct from the results based on response efficiency. Our investigation further the understanding of the differentiated roles of key nodes in the SAN in supporting the self-salience in information processing.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico/métodos , Córtex Pré-Frontal Dorsolateral/fisiologia , Ego , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Social , Lobo Temporal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
5.
Am J Cancer Res ; 11(11): 5263-5281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873460

RESUMO

The great success of chimeric antigen receptor T (CAR-T)-cell therapy in B-cell malignancies has significantly promoted its rapid expansion to other targets and indications, including T-cell malignancies and acute myeloid leukemia. However, owing to the life-threatening T-cell hypoplasia caused by CD7-CAR-T cells specific cytotoxic against normal T cells, as well as CAR-T cell-fratricide caused by the shared CD7 antigen on the T-cell surface, the clinical application of CD7 as a potential target for CD7+ malignancies is lagging. Here, we generated CD7ΔT cells using an anti-CD7 nanobody fragment coupled with an endoplasmic reticulum/Golgi retention domain and demonstrated that these cells transduced with CD7-CAR could prevent fratricide and achieve expansion. Additionally, CD7ΔCD7-CAR-T cells exhibited robust antitumor potiential against CD7+ tumors in vitro as well as in cell-line and patient-derived xenograft models of CD7-positive malignancies. Furthermore, we confirmed that the antitumor activity of CD7-CAR-T cells was positively correlated with the antigen density of tumor cells. This strategy adapts well with current clinical-grade CAR-T-cell manufacturing processes and can be rapidly applied for the therapy of patients with CD7+ malignancies.

6.
J Mater Chem B ; 9(35): 7196-7204, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34291267

RESUMO

Label-free cell sorting devices are of great significance for biomedical research and clinical therapeutics. However, current platforms for label-free cell sorting cannot achieve continuity and selectivity simultaneously, resulting in complex steps and limited reliability. Here, an immunoaffinity-based cell catch-transport-release thermo-chemo-mechanical coupling hydrogel (iCatch) device is reported. It contains a temperature-responsive hydrogel that can generate spatial movement synergically with the reversible binding of affinity handle modified. The functionalized hydrogel is embedded inside a biphasic microfluidic platform to enable cell transportation between the flows. The cell sorting capability and biocompatibility of the iCatch device were validated with CCRF-CEM cells as a proof-of-concept, and CCRF-CEM-specific aptamers with thermo-responsive affinity as well as a hydrogel with temperature-dependent volume were employed accordingly. A cell catching efficiency of ∼40% and a recovery rate of ∼70% were achieved. The iCatch device provides a high-throughput (∼900 cells mm-1 s-1) platform for cell sorting and is ultimately valuable for downstream biomedical applications.


Assuntos
Aptâmeros de Nucleotídeos/química , Materiais Biocompatíveis/química , Separação Celular , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Aptâmeros de Nucleotídeos/síntese química , Materiais Biocompatíveis/síntese química , Humanos , Hidrogéis/síntese química , Teste de Materiais , Tamanho da Partícula , Células Tumorais Cultivadas
7.
Am J Cancer Res ; 11(1): 79-91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520361

RESUMO

Chimeric antigen receptor (CAR) αß T cell adoptive immunotherapy has shown great promise for improving cancer treatment. However, there are several hurdles to overcome for the wide clinical application of CAR-αß T cells therapy, including side effects and a limited T cells source from cancer patients. Therefore, we sought to identify an alternative T cell subset that could avoid these limitations and improve the effectiveness of CAR-T immunotherapy. γδ T cells are a minor subset of T cells, which share the characteristic of innate immune cells and adaptive immune cells. Vγ9Vδ2 T cells are a predominant γδ T subset in the circulating peripheral blood. In this study, we investigated the antigen-specific antitumor activity of CAR-Vγ9Vδ2 T cells targeting MUC1-Tn antigen. Vγ9Vδ2 T cells were expanded from peripheral blood mononuclear cells of healthy volunteers with zoledronic acid and interleukin-2. CAR-Vγ9Vδ2 T cells were generated by transfection of lentivirus encoding MUC1-Tn CAR. Cytotoxicity assays with various cancer cell lines revealed that CAR-Vγ9Vδ2 T cells could effectively lyse tumor cells in an antigen-specific manner, with similar or stronger effects than CAR-αß T cells. However, CAR-Vγ9Vδ2 T cells had shorter persistence, which could be improved with the addition of IL-2 to maintain the function of CAR-Vγ9Vδ2 T cells with consecutive stimulation of tumor cells. Using a xenograft mouse model, we further showed that CAR-Vγ9Vδ2 T cells more effectively suppressed tumor growth in vivo than Vγ9Vδ2 T cells. Therefore, MUC1-Tn CAR-modified Vγ9Vδ2 T cells may represent a novel, promising ready-to-use product for cancer allogeneic immunotherapy.

8.
Small ; 16(15): e1902827, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31513333

RESUMO

Implantable bioelectronics represent an emerging technology that can be integrated into the human body for diagnostic and therapeutic functions. Power supply devices are an essential component of bioelectronics to ensure their robust performance. However, conventional power sources are usually bulky, rigid, and potentially contain hazardous constituent materials. The fact that biological organisms are soft, curvilinear, and have limited accommodation space poses new challenges for power supply systems to minimize the interface mismatch and still offer sufficient power to meet clinical-grade applications. Here, recent advances in state-of-the-art nonconventional power options for implantable electronics, specifically, miniaturized, flexible, or biodegradable power systems are reviewed. Material strategies and architectural design of a broad array of power devices are discussed, including energy storage systems (batteries and supercapacitors), power devices which harvest sources from the human body (biofuel cells, devices utilizing biopotentials, piezoelectric harvesters, triboelectric devices, and thermoelectric devices), and energy transfer devices which utilize sources in the surrounding environment (ultrasonic energy harvesters, inductive coupling/radiofrequency energy harvesters, and photovoltaic devices). Finally, future challenges and perspectives are given.


Assuntos
Fontes de Energia Bioelétrica , Próteses e Implantes , Eletrônica , Humanos
9.
Oncotarget ; 8(23): 37128-37139, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28415754

RESUMO

Natural killer (NK) cells play a pivotal role in monoclonal antibody-mediated immunotherapy through the antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism. NK-92MI is an interleukin-2 (IL-2)-independent cell line, which was derived from NK-92 cells with superior cytotoxicity toward a wide range of tumor cells in vitro and in vivo. Nonetheless, the Fc-receptor (CD16) that usually mediates ADCC is absent in NK-92 and NK-92MI cells. To apply NK-92MI cell-based immunotherapy to cancer treatment, we designed and generated two chimeric receptors in NK-92MI cells that can bind the Fc portion of human immunoglobulins. The construct includes the low-affinity Fc receptor CD16 (158F) or the high-affinity Fc receptor CD64, with the addition of the CD8a extracellular domain, CD28 transmembrane domains, two costimulatory domains (CD28 and 4-1BB), and the signaling domain from CD3ζ. The resulting chimeric receptors, termed CD16-BB-ζ and CD64-BB-ζ, were used to generate modified NK-92MI cells expressing the chimeric receptor, which were named NK-92MIhCD16 and NK-92MIhCD64 cells, respectively. We found that NK-92MIhCD16 and NK-92MIhCD64 cells significantly improved cytotoxicity against CD20-positive non-Hodgkin's lymphoma cells in the presence of rituximab. These results suggest that the chimeric receptor-expressing NK-92MI cells may enhance the clinical responses to currently available anticancer monoclonal antibodies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Células Matadoras Naturais/imunologia , Receptores de IgG/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antígenos CD20/imunologia , Antígenos CD20/metabolismo , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Humanos , Células K562 , Estimativa de Kaplan-Meier , Células Matadoras Naturais/metabolismo , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/patologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Receptores de IgG/genética , Receptores de IgG/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rituximab/imunologia , Rituximab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci China Life Sci ; 59(4): 386-97, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26961900

RESUMO

Recent progress in chimeric antigen receptor-modified T-cell (CAR-T cell) technology in cancer therapy is extremely promising, especially in the treatment of patients with B-cell acute lymphoblastic leukemia. In contrast, due to the hostile immunosuppressive microenvironment of a solid tumor, CAR T-cell accessibility and survival continue to pose a considerable challenge, which leads to their limited therapeutic efficacy. In this study, we constructed two anti-MUC1 CAR-T cell lines. One set of CAR-T cells contained SM3 single chain variable fragment (scFv) sequence specifically targeting the MUC1 antigen and co-expressing interleukin (IL) 12 (named SM3-CAR). The other CAR-T cell line carried the SM3 scFv sequence modified to improve its binding to MUC1 antigen (named pSM3-CAR) but did not co-express IL-12. When those two types of CAR-T cells were injected intratumorally into two independent metastatic lesions of the same MUC1(+) seminal vesicle cancer patient as part of an interventional treatment strategy, the initial results indicated no side-effects of the MUC1 targeting CAR-T cell approach, and patient serum cytokines responses were positive. Further evaluation showed that pSM3-CAR effectively caused tumor necrosis, providing new options for improved CAR-T therapy in solid tumors.


Assuntos
Neoplasias dos Genitais Masculinos/terapia , Imunoterapia Adotiva/métodos , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/transplante , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Neoplasias dos Genitais Masculinos/genética , Neoplasias dos Genitais Masculinos/imunologia , Células HEK293 , Humanos , Células MCF-7 , Masculino , Mucina-1/genética , Mucina-1/imunologia , Mucina-1/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Glândulas Seminais/patologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...