Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 468: 133801, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377908

RESUMO

Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 µg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.


Assuntos
Poluentes Ambientais , Caranguejos Ferradura , Animais , Caranguejos Ferradura/genética , Norfloxacino/toxicidade , Poliestirenos/toxicidade , Estresse Oxidativo
2.
Front Physiol ; 12: 813582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069266

RESUMO

Anthropogenic elevation of atmospheric carbon dioxide (CO2) drives global-scale ocean acidification (OA), which has aroused widespread concern for marine ecosystem health. The tri-spine horseshoe crab (HSC) Tachypleus tridentatus has been facing the threat of population depletion for decades, and the effects of OA on the physiology and microbiology of its early life stage are unclear. In this study, the 1st instar HSC larvae were exposed to acidified seawater (pH 7.3, pH 8.1 as control) for 28 days to determine the effects of OA on their growth, molting, oxidative stress, and gut microbiota. Results showed that there were no significant differences in growth index and molting rate between OA group and control group, but the chitinase activity, ß-NAGase activity, and ecdysone content in OA group were significantly lower than those of the control group. Compared to the control group, reactive oxygen species (ROS) and malondialdehyde (MDA) contents in OA group were significantly increased at the end of the experiment. Superoxide dismutase (SOD), catalase (CAT), and alkaline phosphatase (AKP) activities increased first and then decreased, glutathione peroxidase (GPX) decreased first and then increased, and GST activity changed little during the experiment. According to the result of 16S rRNA sequencing of gut microbiota, microbial-mediated functions predicted by PICRUSt showed that "Hematopoietic cell lineage," "Endocytosis," "Staphylococcus aureus infection," and "Shigellosis" pathways significantly increased in OA group. The above results indicate that OA had no significant effect on growth index and molting rate but interfered with the activity of chitinolytic enzymes and ecdysone expression of juvenile horseshoe crabs, and caused oxidative stress. In addition, OA had adverse effects on the immune defense function and intestinal health. The present study reveals the potential threat of OA to T. tridentatus population and lays a foundation for the further study of the physiological adaptation mechanism of juvenile horseshoe crabs to environmental change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...