Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomarkers ; 27(5): 470-482, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35400257

RESUMO

INTRODUCTION: Tumour cell apoptosis is a crucial indicator for judging the antiproliferative effects of anti-cancer drugs. The detection of optical and macromolecular biomarkers is the most common method for assessing the level of apoptosis. We aimed to explore the anti-tumour mechanisms of 6-methoxyflavone. MATERIALS AND METHODS: Three optical methods, including the percentage of apoptotic cells, cell morphology, and subcellular ultrastructure changes, were obtained using flow cytometry, inverted fluorescence microscopy, and transmission electron microscope imaging. The mRNA or protein expression of macromolecular biomarkers related to common apoptotic pathways was determined via polymerase chain reactions or western blot assays. The functional role of the core gene biomarker was investigated through overexpression, knockdown, and phosphorylation inhibitor (GSK2656157). RESULTS: Transcriptome sequencing and the optical biomarkers assays demonstrated that 6-methoxyflavone could induce apoptosis in HeLa cells. The expression of macromolecular biomarkers indicated that 6-methoxyflavone induced apoptosis through the PERK/EIF2α/ATF4/CHOP pathway. Phosphorylated PERK was identified as the core biomarker of this pathway. Both overexpression and GSK2656157 significantly altered the expression level of phosphorylated PERK in 6-methoxyflavone-treated HeLa cells. DISCUSSION AND CONCLUSION: Macromolecular biomarkers, such as phosphorylated PERK and phosphorylated EIF2α are of great significance for assessing the therapeutic effects of 6-methoxyflavone.


Assuntos
Estresse do Retículo Endoplasmático , eIF-2 Quinase , Apoptose , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Flavonas , Células HeLa , Humanos , Transdução de Sinais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
2.
Bioengineered ; 13(3): 7277-7292, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246013

RESUMO

This study aimed to elucidate the specific anticancer mechanism of 6-methoxyflavone in HeLa cells. A total of 178 putative targets of 6-methoxyflavone were obtained from the PharmMapper database. Microarray analyses, transcriptome sequencing analyses, functional enrichment analyses, and gene set enrichment analyses were performed to preliminarily explore the roles and mechanisms of the 178 targets in cervical cancer. Cell counting kit-8, cell cycle assays, polymerase chain reactions, and western blotting were used to clarify the mechanism of action of 6-methoxyflavone. Molecular docking and noncovalent interaction analyses were performed to further confirm the mechanism of action in three-dimensional structures. Functional enrichment analyses and gene set enrichment analyses indicated that high mRNA expression of cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2) stimulated cell cycle progression in cervical cancer. Cell proliferation and cycle assays, transcriptome sequencing, polymerase chain reactions, and western blotting revealed that 6-methoxyflavone inhibited HeLa cell proliferation and induced S-phase arrest via the CCNA2/CDK2/ cyclin-dependent kinase inhibitor 1A (p21CIP1) pathway. Molecular docking and noncovalent interaction analyses showed that 6-methoxyflavone had the strongest affinity toward, inhibitory effect on, and noncovalent interactions with CDK2, and that the combination of CDK2 and CCNA2 enhanced these effects. An analysis of clinical characteristics showed that 6-methoxyflavone might be related to six clinicopathological parameters of cervical cancer patients. 6-Methoxyflavone induces S-phase arrest in HeLa cells via the CCNA2/CDK2/p21CIP1 pathway.


Assuntos
Neoplasias do Colo do Útero , Ciclina A2/metabolismo , Ciclina A2/farmacologia , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Feminino , Flavonas , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Transdução de Sinais , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
3.
Neoplasma ; 68(6): 1190-1200, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34533030

RESUMO

Cell proliferation and migration play important parts in ovarian cancer progression. BMP9, as one of the members of the TGF-ß superfamily and BMP family, plays a diverse and significant array of biological roles, including cell differentiation, proliferation, apoptosis, tumorigenesis, and metabolism. However, the role and mechanism of BMP9 in ovarian cancer progression remains uncertain. We found that the expression of BMP9 was increased in human ovarian cancer cell lines, which induced Notch1 intracellular domain (NICD1) accumulation. And we also found the expression abundance of BMP9 is low in ovarian cancer cells. Thus, we generated recombinant adenoviruses overexpressing BMP9 to perform the research. We found that overexpression of BMP9 promoted ovarian cancer cell proliferative viability, cell cycle progression, cell migration in vitro, and accelerated subcutaneous tumor growth in vivo, which was inhibited by dominant-negative mutant Notch1 recombinant adenoviruses. Besides, we also demonstrated that silencing of BMP9 by recombinant adenoviruses inhibited ovarian cancer cell viability and migration in vitro. Additionally, BMP9-induced ovarian cancer cell progression also involved the elevation of HES2, c-Myc, MMP9, and Cyclin D1, as well as repressed expression of p27. Together, these results revealed that BMP9 acts as a promoting factor in ovarian cancer progression, and overexpression of BMP9 promotes ovarian cancer progression and growth via Notch1 signaling. Thereby our research may provide new insight into the pathogenesis of ovarian cancer and BMP9-Notch1 signaling may serve as a novel therapeutic target axis for ovarian cancer treatment.


Assuntos
Fator 2 de Diferenciação de Crescimento/genética , Neoplasias Ovarianas , Receptor Notch1 , Carcinoma Epitelial do Ovário , Proliferação de Células , Feminino , Humanos , Neoplasias Ovarianas/genética , Receptor Notch1/genética , Transdução de Sinais
4.
J Oncol ; 2021: 6617312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897778

RESUMO

Alloimperatorin is a compound extracted from the traditional Chinese medicine (Angelica dahurica), which has exhibited anticancer activity. However, its precise molecular mechanism of anticancer remains unclear. Alloimperatorin-induced apoptosis of cervical cancer cells and its molecular mechanism were investigated in the present study. Cholecystokinin octapeptide (CCK-8) was employed to evaluate the cytotoxicity of alloimperatorin on HeLa, SiHa, and MS-751 cells. Flow cytometry was used to assess apoptosis induced by alloimperatorin. The mechanism of apoptosis was verified by mitochondrial membrane potential, Western blotting, and fluorescent PCR. The results of the study showed that alloimperatorin reduced the activity of HeLa cells. The calculated IC50 at 48 hours was 116.9 µM. Compared with the control group, alloimperatorin increased the apoptotic rate of HeLa cells and reduced the mitochondrial membrane potential of HeLa cells. The Western blot results showed that alloimperatorin promotes the expression of caspase3, 8, 9 and that Bax apoptotic proteins reduce PARP expression, procaspase3, 8, 9, and BCL-2 proteins and reduces the cyt-c in the mitochondria expression. The results demonstrated that alloimperatorin can induce HeLa cell apoptosis through mitochondria and extrinsic apoptotic pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...