Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 112(12): 2476-2485, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35819334

RESUMO

Wheat powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most serious wheat diseases in the world. Biological control is considered an environmentally safe approach to control plant diseases. Here, to develop effective biocontrol agents for controlling wheat powdery mildew, antagonistic strain XZ16-1 was isolated and identified as Bacillus subtilis based on the morphological, biochemical, and physiological characteristics and 16S rDNA sequence. The culture filtrate of B. subtilis XZ16-1 and its extracts had a significant inhibitory effect on the spore germination of Bgt. Moreover, the therapeutic and prevention efficacy of the 100% culture filtrate on wheat powdery mildew reached 81.18 and 83.72%, respectively, which was better than that of chemical fungicide triadimefon. Further antimicrobial mechanism analysis showed that the XZ16-1 culture filtrate could inhibit the development of powdery mildew spores by disrupting the cell membrane integrity, causing reductions in the mitochondrial membrane potential, and inducing the accumulation of reactive oxygen species in the spores. Biochemical detection indicated that XZ16-1 could solubilize phosphate, fix nitrogen, and produce hydrolases, lipopeptides, siderophores, and indole-3-acetic acid. Defense-related enzymes activated in wheat seedlings treated with the culture filtrate indicated that disease resistance was induced in wheat to resist pathogens. Furthermore, a 106 CFU/ml suspension of XZ16-1 increased the height, root length, fresh weight, and dry weight of wheat seedlings by 77.13, 63.46, 76.73, and 19.16%, respectively, and showed good growth-promotion properties. This study investigates the antagonistic activity and reveals the action mechanism of XZ16-1, which can provide an effective microbial agent for controlling wheat powdery mildew.


Assuntos
Ascomicetos , Bacillus subtilis , Triticum/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/genética , Ascomicetos/fisiologia , Erysiphe , Resistência à Doença/genética
2.
Planta ; 255(3): 64, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147783

RESUMO

MAIN CONCLUSION: The RgTyDCs possess typical decarboxylase functional activity in vitro and in vivo and participate in acteoside biosynthesis in R. glutinosa, positively controlling its production via activated acteoside/tyrosine-derived pathways. Acteoside is an important ingredient in Rehmannia glutinosa and an active natural component that contributes to human health. Tyrosine decarboxylase (TyDC) is thought to play an important role in acteoside biosynthesis. Several plant TyDC family genes have been functionally characterized and shown to play roles in some bioactive metabolites' biosynthesis by mediating the decarboxylation of L-tyrosine and L-dihydroxyphenylalanine (L-DOPA); however, one TyDC (named RgTyDC1) in R. glutinosa has been identified to date, but the family genes that contribute to acteoside biosynthesis remain largely characterized. Here, by in silico and experimental analyses, we isolated and identified three RgTyDCs (RgTyDC2 to RgTyDC4) in this species; these genes' sequences showed 50.92-82.55% identity, included highly conserved domains with homologues in other plants, classified into two subsets, and encoded proteins that localized to the cytosol. Enzyme kinetic analyses of RgTyDC2 and RgTyDC4 indicated that they both efficiently catalysed L-tyrosine and L-dopa. The overexpression of RgTyDC2 and RgTyDC4 in R. glutinosa, which was associated with enhanced TyDC activity, significantly increased tyramine and dopamine contents, which was positively correlated with improved acteoside production; moreover, the overexpression of RgTyDCs led to upregulated expression of some other genes-related to acteoside biosynthesis. This result suggested that the overexpression of RgTyDCs can positively activate the molecular networks of acteoside pathways, enhancing the accumulation of tyramine and dopamine, and promoting end-product acteoside biosynthesis. Our findings provide an evidence that RgTyDCs play vital molecular roles in acteoside biosynthesis pathways, contributing to the increase in acteoside yield in R. glutinosa.


Assuntos
Rehmannia , Glucosídeos , Fenóis , Rehmannia/genética , Tirosina Descarboxilase/genética
3.
PLoS One ; 16(6): e0253188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34170906

RESUMO

ABCC multidrug resistance-associated proteins (ABCCs/MRPs), a subfamily of ABC transporters, are involved in multiple physiological processes. Although these proteins have been characterized in some plants, limited efforts have been made to address their possible roles in Rehmannia glutinosa, a medicinal plant. Here, we scanned R. glutinosa transcriptome sequences and identified 18 RgABCC genes by in silico analysis. Sequence alignment revealed that the RgABCCs were closely phylogenetically related and highly conserved with other plant ABCCs/MRPs. Subcellular localization revealed that most of the RgABCCs were deposited in vacuoles and a few in plasma membranes. Tissue-specific expression of the RgABCCs indicated significant specific accumulation patterns, implicating their roles in the respective tissues. Differential temporal expression patterns of the RgABCCs exhibited their potential roles during root development. Various abiotic stress and hormone treatment experiments indicated that some RgABCCs could be transcriptionally regulated in roots. Furthermore, the transcription of several RgABCCs in roots was strongly activated by cadmium (Cd), suggesting possible roles under heavy metal stresses. Functional analysis of RgABCC1 heterologous expression revealed that it may increase the tolerance to Cd in yeast, implying its Cd transport activity. Our study provides a detailed inventory and molecular characterization of the RgABCCs and valuable information for exploring their functions in R. glutinosa.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/biossíntese , Raízes de Plantas/metabolismo , Rehmannia/metabolismo , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Rehmannia/genética , Estresse Fisiológico/fisiologia , Vacúolos/genética , Vacúolos/metabolismo
4.
Phys Chem Chem Phys ; 17(17): 11499-508, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854200

RESUMO

Density functional theory (DFT) calculations are employed to investigate the reactivity of tungsten oxide clusters towards carbon monoxide. Extensive structural searches show that all the ground-state structures of (WO3)n(+) (n = 1-4) contain an oxygen radical center with a lengthened W-O bond which is highly active in the oxidation of carbon monoxide. Energy profiles are calculated to determine the reaction mechanisms and evaluate the effect of cluster sizes. The monomer WO3(+) has the highest reactivity among the stoichiometric clusters of different sizes (WO3)n(+) (n = 1-4). The reaction mechanisms for CO with mono-nuclear stoichiometric tungsten oxide clusters with different charges (WO3(-/0/+)) are also studied to clarify the influence of charge states. Our calculated results show that the ability to oxidize CO gets weaker from WO3(+) to WO3(-) as the negative charge accumulates progressively.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 109: 125-32, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23523755

RESUMO

Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are carried out to investigate the electronic and structural properties of a series of bimetallic oxide clusters MW2O9(-/0) (M=V, Nb, Ta). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES). Theoretical calculations at the B3LYP level yield singlet and doublet ground states for the bimetallic anionic and neutral clusters, respectively. All the clusters present the six-membered ring structures with different symmetries, except that the TaW2O9(-) cluster shows a chained style with a penta-coordinated tantalum atom. Spin density analyses reveal oxygen radical species in all neutral clusters, consistent with their structural characteristics. Moreover, additional calculations are performed to study the oxidation reaction of CO molecule with the W3O9(+) cation and the isoelectronic VW2O9 cluster, and results indicate that the introduction of vanadium at tungsten site can efficiently improve the oxidation reactivity.


Assuntos
Nióbio/química , Óxidos/química , Tantálio/química , Tungstênio/química , Vanádio/química , Modelos Moleculares , Espectroscopia Fotoeletrônica , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...