Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 246: 120734, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862875

RESUMO

It remains a great challenge to efficiently remove As(III) from groundwater using traditional technologies due to its stable electroneutral form. This study constructed an asymmetric flow-electrode electrochemical separation (AFES) system, which overcomes the drawback of H+ release from anodic carbon oxidation and achieves continuous self-alkalization function and highly efficient removal of As(III) from groundwater. At the applied voltage of 1.2 V and initial pH 7.5, the system could rapidly decrease the total As (T-As) concentration from 150.0 to 8.9 µg L-1 within 90 min, with an energy consumption of 0.04 kWh m-3. The self-alkalization was triggered by the generation of H2O2 from dissolved oxygen reduction and the adsorption of H+ on the cathode in the feed chamber, which significantly promoted the dissociation and oxidation of As(III), resulting in the removal of T-As predominantly in the form of As(V). The removal performance of T-As was slightly affected by the initial pH and coexisting ions in the feed chamber. The AFES system also exhibited considerable stability after 20 cycles of continuous experiments and superior performance in treating As-containing real groundwater. Moreover, the pH of the alkalized solution can be restored to the initial level by standing or aeration operation. This work offers a novel and efficient pathway for the detoxication of As(III)-contaminated groundwaters.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Oxirredução , Eletrodos , Adsorção
2.
Environ Sci Technol ; 57(33): 12476-12488, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37578119

RESUMO

Cu and Ni complexes with ethylenediaminetetraacetic acid (Cu/Ni-EDTA), which are commonly present in metal plating industry wastewaters, pose a serious threat to both the environment and human health due to their high toxicity and low biodegradability. In this study, the treatment of solutions containing either or both Cu-EDTA and Ni-EDTA using an electrochemical process is investigated under both oxidizing and reducing electrolysis conditions. Our results indicate that Cu-EDTA is decomplexed as a result of the cathodic reduction of Cu(II) with subsequent electrodeposition of Cu(0) at the cathode when the cathode potential is more negative than the reduction potential of Cu-EDTA to Cu(0). In contrast, the very negative reduction potential of Ni-EDTA to Ni(0) renders the direct reduction of EDTA-complexed Ni(II) at the cathode unimportant. The removal of Ni during the electrolysis process mainly occurs via anodic oxidation of EDTA in Ni-EDTA, with the resulting formation of low-molecular-weight organic acids and the release of Ni2+, which is subsequently deposited as Ni0 on the cathode. A kinetic model incorporating the key reactions occurring in the electrolysis process has been developed, which satisfactorily describes EDTA, Cu, Ni, and TOC removal. Overall, this study improves our understanding of the mechanism of removal of heavy metals from solution during the electrochemical advanced oxidation of metal plating wastewaters.


Assuntos
Complexos de Coordenação , Águas Residuárias , Humanos , Ácido Edético/química , Complexos de Coordenação/química , Galvanoplastia , Cobre
3.
Financ Innov ; 9(1): 100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275624

RESUMO

To measure the diversification capability of Bitcoin, this study employs wavelet analysis to investigate the coherence of Bitcoin price with the equity markets of both the emerging and developed economies, considering the COVID-19 pandemic and the recent Russia-Ukraine war. The results based on the data from January 9, 2014 to May 31, 2022 reveal that compared with gold, Bitcoin consistently provides diversification opportunities with all six representative market indices examined, specifically under the normal market condition. In particular, for short-term horizons, Bitcoin shows favorably low correlation with each index for all years, whereas exception is observed for gold. In addition, diversification between Bitcoin and gold is demonstrated as well, mainly for short-term investments. However, the diversification benefit is conditional for both Bitcoin and gold under the recent pandemic and war crises. The findings remind investors and portfolio managers planning to incorporate Bitcoin into their portfolios as a diversification tool to be aware of the global geopolitical conditions and other uncertainty in considering their investment tools and durations.

4.
Water Res ; 236: 119957, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058917

RESUMO

Radical and non-radical oxidation pathways have been universally validated in transition metals (TMs) oxides activated peroxymonosulfate (PMS) processes. However, achieving high efficiency and selectivity of PMS activation remains challenging due to the ambiguous tuning mechanism of TMs sites on PMS activation in thermodynamic scope. Herein, we demonstrated that the exclusive PMS oxidation pathways were regulated by d orbital electronic configuration of B-sites in delafossites (CuBO2) for Orange I degradation (CoIII 3d6 for reactive oxygen species (ROSs) vs. CrIII 3d3 for electron transfer pathway). The d orbital electronic configuration was identified to affect the orbital overlap extent between 3d of B-sites and O 2p of PMS, which induced B-sites offering different types of hybrid orbital to coordinate with O 2p of PMS, thereby forming the high-spin complex (CuCoO2@PMS) or the low-spin complex (CuCrO2@PMS), on which basis PMS was selectively dissociated to form ROSs or achieve electron transfer pathway. As indicated by thermodynamic analysis, a general rule was proposed that B-sites of less than half-filled 3d orbital tended to act as electron shuttle, i.e., CrIII (3d3), MnIII (3d4), interacting with PMS to execute an electron transfer pathway for degrading Orange I, while B-sites of between half-filled and full-filled 3d orbital preferred to be electron donator, i.e., CoIII (3d6), FeIII (3d5), activating PMS to generate ROSs. These findings lay a foundation for the oriented design of TMs-based catalysts from the atomic level according to d orbital electronic configuration optimization, as so to facilitate the achievement of PMS-AOPs with highly selective and efficient remediation of contaminants in water purification practice.


Assuntos
Poluentes Ambientais , Compostos Férricos , Peróxidos , Metais
6.
Sci Total Environ ; 866: 161380, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610625

RESUMO

Electrifying transportation through the large-scale implementation of electric vehicles (EVs) is an effective route for mitigating urban atmospheric pollution and greenhouse gas emissions and alleviating petroleum-derived fossil fuel reliance. However, huge dumps of spent lithium-ion batteries (LIBs) have emerged worldwide as a consequence of their extensive use in EVs. With the increasing shortage in LIB raw materials, the recycling of spent LIBs has become a fundamental part of a sustainable approach for energy storage applications, considering the potential economic and environmental benefits. In this mini-review, we will provide a state-of-the-art overview of LIB recycling processes (e.g., echelon utilization, pretreatment, valuable metal leaching and separation). We then discuss the sustainability of current LIB recycling processes from the perspectives of life cycle assessment (LCA) and economic feasibility. Finally, we highlight the existing challenges and possibilities of LIB recycling processes and provide future directions that can bridge the gap between proof-of-concept bench demonstrations and facility-scale field deployments through mutual efforts from academia, industry, and government. It is expected that this review could provide a guideline for enhancing spent LIB recycling and facilitating the sustainable development of the field.

7.
Environ Sci Technol ; 57(5): 2105-2117, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36688915

RESUMO

Vivianite (Fe3(PO4)2·8H2O) crystallization has attracted increasing attention as a promising approach for removing and recovering P from wastewaters. However, FeII is susceptible to oxygen with its oxidation inevitably influencing the crystallization of vivianite. In this study, the profile of vivianite crystallization in the presence of dissolved oxygen (DO) was investigated at pHs 5-7 in a continuous stirred-tank reactor. It is found that the influence of DO on vivianite crystallization was highly pH-related. At pH 5, the low rate of FeII oxidation at all of the investigated DO of 0-5 mg/L and the low degree of vivianite supersaturation resulted in slow crystallization with the product being highly crystalline vivianite, but the P removal efficiency was only 30-40%. The removal of P from the solution was substantially more effective (to >90%) in the DO-removed reactors at pH 6 and 7, whereas the efficiencies of P removal and especially recovery decreased by 10-20% when FeII oxidation became more severe at DO concentrations >2.5 mg/L (except at pH 6 with 2.5 mg/L DO). The elevated degree of vivianite supersaturation and enhanced rate and extent of FeII oxidation at the higher pHs led to decreases in the size and homogeneity of the products. At the same pH, amorphous ferric oxyhydroxide (AFO)─the product of FeII oxidation and FeIII hydrolysis─interferes with vivianite crystallization with the induction of aggregation of crystal fines by AFO, leading to increases in the size of the obtained solids.


Assuntos
Compostos Férricos , Fósforo , Compostos Férricos/química , Fósforo/química , Cristalização , Eliminação de Resíduos Líquidos/métodos , Esgotos , Fosfatos/química , Compostos Ferrosos/química
8.
J Hazard Mater ; 442: 130016, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179625

RESUMO

To address the difficulty of precisely regulating the two-electron oxygen reduction reaction (2e-ORR) and investigate the synergistic effect of hydrogen peroxide (H2O2) and peroxymonosulfate (PMS), a heterogeneous electro-catalyst was synthesized via carbonation of boron (B) and sulfur (S) co-doping electrospun nanofibers containing iron and cobalt (B, S-Fe/Co@C-NCNFs-900), and used to degrade levofloxacin (Levo) in the electro-activating PMS with self-made cathode material (E-cathode-PMS) system. The morphological, structural, and electrochemical characteristics have been investigated. The results showed that B and S co-doping could remarkably enhance electron transfer and manage two-electron oxygen reduction, which was more favorable for H2O2 generation. Levo degradation efficiency could reach 99.63% with a reaction rate of 0.3056 min-1 in 20 min under the appropriate conditions (pH = 4, current = 20 mA, and [PMS] = 8.0 mM). The steady-state concentration of singlet oxygen (1O2) was calculated to be 669.17 × 10-14 M, which was 15.42, 29.74, and 45.00 times respectively than that of HO2·/O2·- (43.40 × 10-14 M), ·OH (22.25 × 10-14 M) and SO4-·(14.87 × 10-14 M), signifying that 1O2 was the predominant reactive oxygen species (ROS) involved in Levo removal. The high TOC removal (74.19%), low energy consumption (0.14 kWh m-3 order-1), few intermediates toxicity, and excellent Levo degradation efficiency for complex wastewater with various anions and matrixes showed the prospective practical applications of the E-cathode-PMS system. Overall, this study provides a useful strategy to regulate and control the 2e-ORR pathway.


Assuntos
Nanofibras , Poluentes Químicos da Água , Carbono/química , Peróxido de Hidrogênio/química , Levofloxacino , Águas Residuárias , Boro , Espécies Reativas de Oxigênio , Oxigênio Singlete , Estudos Prospectivos , Poluentes Químicos da Água/química , Oxirredução , Peróxidos/química , Eletrodos , Ferro/química , Enxofre , Cobalto , Oxigênio
9.
Water Res ; 229: 119453, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509033

RESUMO

Hydrophobic gas permeable membranes (GPMs) exhibit great potential in stripping or recovering ammonia from wastewater, but they also suffer from severe fouling issues due to the complex water matrix, since the related process is often operated under highly alkaline conditions (pH > 11). In this study, we proposed a novel membrane stripping process by integrating a cation exchange membrane (CEM) in alkali-driven Donnan dialysis prior to GPM for efficient and robust ammonia recovery from real biogas slurry. During the conventional stripping for diluted biogas slurry, the ammonia removal across GPM finally decreased by 15% over 6 consecutive batches, likely due to the obvious deposition of inorganic species and penetration of organic compounds (rejection of 90% only). In contrast, a constant ammonia removal of 80% and organic matter rejection of more than 99%, as well as negligible fouling of both membranes, were found for the proposed novel stripping process operated over 120 h. Our results demonstrated that additional divalent cations clearly aggravated the fouling of GPM in conventional stripping, where only weak competition across CEM was found in the CEM-GPM hybrid mode. Then, for raw biogas slurry, the new stripping achieved a stable ammonia removal up to 65%, and no fouling occurrence was found, superior to that in the control (declined removal from 87% to 55%). The antifouling mechanism by integrating CEM prior to GPM involves size exclusion and charge repulsion towards varying foulants. This work highlighted that the novel membrane stripping process of hybrid CEM-GPM significantly mitigated membrane fouling and can be regarded as a potential alternative for ammonia recovery from high-strength complex streams.


Assuntos
Amônia , Biocombustíveis , Amônia/química , Diálise Renal , Águas Residuárias
10.
Environ Sci Technol ; 56(23): 17298-17309, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36394539

RESUMO

The presence of excessive concentrations of nitrate in industrial wastewaters, agricultural runoff, and some groundwaters constitutes a serious issue for both environmental and human health. As a result, there is considerable interest in the possibility of converting nitrate to the valuable product ammonia by electrochemical means. In this work, we demonstrate the efficacy of a novel flow cathode system coupled with ammonia stripping for effective nitrate removal and ammonia generation and recovery. A copper-loaded activated carbon slurry (Cu@AC), made by a simple, low-cost wet impregnation method, is used as the flow cathode in this novel electrochemical reactor. Use of a 3 wt % Cu@AC suspension at an applied current density of 20 mA cm-2 resulted in almost complete nitrate removal, with 97% of the nitrate reduced to ammonia and 70% of the ammonia recovered in the acid-receiving chamber. A mathematical kinetic model was developed that satisfactorily describes the kinetics and mechanism of the overall nitrate electroreduction process. Minimal loss of Cu to solution and maintenance of nitrate removal performance over extended use of Cu@AC flow electrode augers well for long-term use of this technology. Overall, this study sheds light on an efficient, low-cost water treatment technology for simultaneous nitrate removal and ammonia generation and recovery.


Assuntos
Amônia , Nitratos , Humanos , Eletrodos , Óxidos de Nitrogênio , Cobre
11.
Water Res ; 221: 118822, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834973

RESUMO

Driven by the electric-vehicle revolution, a sharp increase in lithium (Li) demand as a result of the need to produce Li-ion batteries is expected in coming years. To enable a sustainable Li supply, there is an urgent need to develop cost-effective and environmentally friendly methods to extract Li from a variety of sources including Li-rich salt-lake brines, seawater, and wastewaters. While the prevalent lime soda evaporation method is suitable for the mass extraction of Li from brine sources with low Mg/Li ratios, it is time-consuming (>1 year) and typically exhibits low Li recovery. Electrochemically-based methods have emerged as promising processes to recover Li given their ease of management, limited requirement for additional chemicals, minimal waste production, and high selectivity towards Li. This state-of-the-art review provides a comprehensive overview of current advances in two key electrochemical Li recovery technologies (electrosorption and electrodialysis) with particular attention given to advances in understanding of mechanism, materials, operational modes, and system configurations. We highlight the most pressing challenges these technologies encounter including (i) limited electrode capacity, poor electrode stability and co-insertion of impurity cations in the electrosorption process, and (ii) limited Li selectivity of available ion exchange membranes, ion leakage and membrane scaling in the electrodialysis process. We then systematically describe potentially effective strategies to overcome these challenges and, further, provide future perspectives, particularly with respect to the translation of innovation at bench-scale to industrial application.


Assuntos
Eletricidade , Lítio , Cátions , Eletrodos , Troca Iônica
12.
Environ Res ; 212(Pt D): 113567, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35643311

RESUMO

The use of vivianite (Fe3(PO4)2∙8H2O) as a slow-release P fertilizer in agriculture could be a promising way for the utilization of the recovered vivianite products from sewage treatment systems but the efficiency of vivianite-P release in the rhizospheric soil was yet unclear. In this work the dissolution of vivianite was investigated under anoxic and aerobic conditions with the focus on the effects of citrate as a common organic matter in the rhizosphere by tracking the kinetics of P release and the variations of aqueous and solid phases. The results show that citrate effectively induced the dissolution of vivianite particles at pH 6 with simultaneous release of Fe and PO4-P. The enhancement of vivianite dissolution was positively correlated to the concentrations of citrate with complete dissolution observed when citrate was above 6 mM. Compared with anoxic conditions, aerobic conditions further enhanced the dissolution of vivianite to some extent, which could be partially attributed to the oxidation and removal of aqueous FeII in the solution that drove the equilibrium towards dissolution. In the presence of 2 mM citrate, the decrease in pH from 6.0 to 4.0 enhanced the vivianite-P release by 56.1%, indicating the pH dependence of the citrate-induced vivianite dissolution. This study has shown that the efficiency of P release from vivianite products as a fertilizer varies largely under different physico-chemical conditions in the rhizospheric microenvironment, which is critical for determining the dosage of vivianite for a specific soil.


Assuntos
Fertilizantes , Solo , Citratos , Ácido Cítrico , Compostos Ferrosos , Fosfatos
13.
Environ Sci Technol ; 56(14): 10391-10401, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35766603

RESUMO

Boron is present in the form of boric acid (B(OH)3 or H3BO3) in seawater, geothermal waters, and some industrial wastewaters but is toxic at elevated concentrations to both plants and humans. Effective removal of boron from solutions at circumneutral pH by existing technologies such as reverse osmosis is constrained by high energy consumption and low removal efficiency. In this work, we present an asymmetric, membrane-containing flow-by electrosorption system for boron removal. Upon charging, the catholyte pH rapidly increases to above ∼10.7 as a result of water electrolysis and other Faradaic reactions with resultant deprotonation of boric acid to form B(OH)4- and subsequent removal from solution by electrosorption to the anode. Results also show that the asymmetric flow-by electrosorption system is capable of treating feed streams with high concentrations of boron and RO permeate containing multiple competing ionic species. On the basis of the experimental results obtained, a mathematical model has been developed that adequately describes the kinetics and mechanism of boron removal by the asymmetric electrosorption system. Overall, this study not only provides new insights into boron removal mechanisms by electrosorption but also opens up a new pathway to eliminate amphoteric pollutants from contaminated source waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Boro , Estudos de Viabilidade , Filtração , Humanos , Osmose , Purificação da Água/métodos
14.
Front Neurol ; 13: 836949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463154

RESUMO

Purpose: Data on sleep parameters by polysomnography (PSG) in patients with anxiety-related disorders are limited. Although the disturbance and risk factors of sleep misperception have been implicated in psychopathology, its role in anxiety-related disorders remains unclear. This retrospective study aimed to explore the characteristics and sleep parameters in patients with anxiety-related disorders and different sleep perception types, and to explore the associated factors for sleep misperception. Methods: Patients with anxiety-related disorders who had complaint of insomnia for more than 3 months were collected at Wuhan Mental Health Center between December 2019 and July 2021. Patients underwent a two-night PSG monitoring and completed a self-reported sleep questionnaire. Behaviors were assessed using 30-item Nurses' Observation Scale for Inpatient Evaluation (NOSIE-30). Patients were divided into normal sleep perception (NSP), positive sleep perception abnormality [PSPA; overestimation of total sleep time (TST) >60 min], and negative sleep perception abnormality (NSPA; underestimation of TST >60 min) groups. PSG indicators and NOSIE-30 scores were compared among groups using the one-way analysis of variance and the Kruskal-Wallis test. Multiple linear regression analysis was performed to determine the associated factors for misperception index. Results: The subjective and objective TST were 5.5 ± 1.9 h and 6.4 ± 1.7 h in 305 patients, respectively. Sixty-nine (22.6%) had PSPA, 80 (26.2%) had NSP, and 156 (51.1%) had NSPA. Subjective TST and objective sleep parameters were significantly different among groups. No statistical differences in NOSIE-30 subscale and total scores were observed among groups. Sex, rapid eye movement (REM)/TST (%), sleep efficiency, number of awakenings, Non-rapid eye movement of stage 2 sleep (NREM)/TST (%), REM spontaneous arousal times, sleep latency, diagnosis, social competence, and manifest psychosis were associated with sleep misperception. Conclusion: Sleep misperception is common in patients with anxiety-related disorders. Various sleep perception types have different PSG profiles, but similar personal and social behaviors. These data may be helpful to conduct personalized treatment.

15.
Water Res ; 217: 118425, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429884

RESUMO

Anodic oxidation has emerged as a promising treatment technology for the removal of a broad range of organic pollutants from wastewaters. Hydroxyl radicals are the primary species generated in anodic oxidation systems to oxidize organics. In this review, the methods of identifying hydroxyl radicals and the existing debates and misunderstandings regarding the validity of experimental results are discussed. Consideration is given to the methods of quantification of hydroxyl radicals in anodic oxidation systems with particular attention to approaches used to compare the electrochemical performance of different anodes. In addition, we describe recent progress in understanding the mechanisms of hydroxyl radical generation at the surface of most commonly used anodes and the utilization of hydroxyl radical in typical electrochemical reactors. This review shows that the key challenges facing anodic oxidation technology are related to i) the elimination of mistakes in identifying hydroxyl radicals, ii) the establishment of an effective hydroxyl radical quantification method, iii) the development of cost effective anode materials with high corrosion resistance and high electrochemical activity and iv) the optimization of electrochemical reactor design to maximise the utilization efficiency of hydroxyl radicals.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , Eletrodos , Oxirredução , Águas Residuárias
16.
Water Res ; 216: 118319, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35339051

RESUMO

While flow anodic oxidation systems can efficiently generate hydroxyl radicals (·OH) and significantly enhance direct electron transfer (DET) processes that result in the oxidation of target contaminants via the charge percolating network of flow anode particles, challenges remain in constructing a flow anodic oxidation system that can be operated continuously with stable performance. Here we incorporate an ultrafiltration (UF) membrane module into the flow anodic oxidation system and achieve the continuous defluorination of perfluorooctanoic acid (PFOA) for 12 days with high efficiency (94.1%) and reasonable energy consumption (38.1 Wh mg-1) compared to other advanced oxidation processes by using a mixture of conducting TixO2x-1 and Pd/CNT particles as the flow anode. The results indicate that DET, ·OH mediated oxidation and adsorption processes play critical roles in the degradation of PFOA during the flow anodic oxidation processes. The synergistic effect of the TixO2x-1 and Pd/CNT particles enhances the defluorination efficiency by 3.2 times at 4.5 V vs Ag/AgCl compared to the control experiment (no flow anode particles present) and promotes the release of F- into solution while other intermediate products remain adsorbed to the surface of the Pd/CNT particles. Although the Pd/CNT particles were oxidized after the long-term operation, no obvious Pd ion leakage into solution was observed. Results of this study support the feasibility of continuous operation of a flow anode/UF system with stable performance and pave the way for the translation of this advanced oxidation technology to practical application.


Assuntos
Fluorocarbonos , Ultrafiltração , Caprilatos , Eletrodos , Oxirredução
17.
J Hazard Mater ; 424(Pt C): 127655, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34773795

RESUMO

In this work, a novel Ni-doped PbO2 anode (Ni-PbO2) was prepared via a co-electrodeposition method and used to remove Ni-ethylenediaminetetraacetic acid (Ni-EDTA) from solutions typical of electroless nickel plating wastewater. Compared with a pure PbO2 electrode, Ni doping increased the oxygen evolution potential as well as the reactive surface area and reactive site concentration and reduced the electron transfer resistance thereby resulting in superior Ni-EDTA degradation performance. The 1% Ni-doped PbO2 electrode exhibited the best electrochemical oxidation activity with a Ni-EDTA removal efficiency of 96.5 ± 1.2%, a Ni removal efficiency of 52.1 ± 1.4% and an energy consumption of 2.6 kWh m-3. Further investigations revealed that 1% Ni doping enhanced both direct oxidation and hydroxyl radical mediated oxidation processes involved in Ni-EDTA degradation. A mechanism for Ni-EDTA degradation is proposed based on the identified products. The free nickel ion concentration initially increased as a result of the degradation of Ni-EDTA complexes and subsequently decreased as a consequence of nickel electrodeposition on the cathode surface. Further characterization of the cathode deposits by X-ray diffraction and X-ray photoelectron spectra indicated that the deposition products were a mixture of Ni0, NiO and Ni(OH)2 with elemental Ni accounting for roughly 80% of the deposited nickel. Results of this study pave the way for the application of anodic oxidation processes for efficient degradation of Ni-containing complexes and recovery of Ni from nickel-containing wastewaters.

18.
Water Res ; 203: 117547, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412015

RESUMO

In flow anode systems, surface-bound hydroxyl radicals (*OH) are generated at the solid-liquid interface of suspended particulate charge carriers at potentials well below that required for oxygen evolution as a result of water splitting. While these surface-bound radicals are powerful indiscriminant oxidants that often lead to complete mineralization of organic pollutants, the more selective process of direct electron transfer (DET) may also occur at the particle electrode interfaces and play a critical role in the degradation of some contaminants. In this study, we investigated DET processes in a flow anode system in which carbon black was utilized as the flow anode material and Pt, Ti, IrRu and IrTa meshes were used as the current collectors. The results indicate that the use of a carbon black flow anode enhanced the DET rate by 20 times at 1.0 V vs Ag/AgCl compared to the control experiment with no carbon black particles present. Low solution conductivity had a more obvious negative effect on the DET process (compared to *OH mediated oxidation) due to the high potential drop and inhibition of mass transfer processes at the solid-liquid interfaces of the anode particles. The DET rates were dependent on the particular anode current collector used (i.e., Ti, IrRu, IrTa or Pt mesh) with differences in rates ascribed to the electron transfer resistance of the current collectors in the flow anode system. Detailed investigation of the degradation of phenol in a flow anode system revealed that this widely studied contaminant could be degraded with an energy consumption of 3.08 kWh m-3, a value substantially lower than that required with other techniques. Results of this study provide a better understanding of the DET mechanism at the solid-solid and solid-liquid interfaces with these insights expected to benefit the design of flow anode materials and current collectors and lead to the improvement in performance of flow anode systems.


Assuntos
Fenol , Poluentes Químicos da Água , Eletrodos , Elétrons , Oxirredução , Fenóis , Poluentes Químicos da Água/análise
19.
Water Res ; 203: 117498, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371229

RESUMO

A novel design for a flow-electrode capacitive deionization (FCDI) system consisting of tubular electrodes in a shell and tube heat exchanger configuration is proposed. Each electrode consists of a metallic mesh current collector along the inner circumference of a tubular ion-exchange membrane. This tubular FCDI design is suitable for scale-up as it consists of easily manufactured components which can be assembled in an array. An apparatus with 4 tubular electrodes with a large effective area (202.3 cm2) was constructed and shown to provide a high net salt (NaCl) removal rate (0.15 mg s-1 at 1.2 V applied voltage and ∼2000 mg L-1 influent total dissolved solids concentration). A computational fluid dynamics (CFD) model incorporating ion migration and transport mechanisms was developed to simulate the ion concentration and electrical potential profiles in the water channel. The results of CFD modelling highlighted the need to maximize regions of both high potential gradient and high hydraulic flow in order to achieve optimal salt removal. In brief, this study presents a new design approach for FCDI scale-up and provides a computational tool for optimization of this design and future innovative FCDI designs.


Assuntos
Purificação da Água , Adsorção , Eletricidade , Eletrodos , Troca Iônica , Cloreto de Sódio
20.
Environ Sci Technol ; 55(10): 7015-7024, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33905246

RESUMO

This work proposed an innovative and energy-efficient Donnan Dialysis (DD) and Osmotic Distillation (OD) hybrid process for alkali-driven ammonium recovery from wastewater. The efficiency and feasibility of ammonium removal and recovery from synthetic and real wastewater using NaOH and waste alkali were investigated. Ammonium in the feed first transported across the cation exchange membrane and accumulated in the receiver chamber. It is then deprotonated as ammonia, passing through the gas permeable membrane and finally is fixed as ammonium salt in the acid chamber. Our results indicated that employing waste alkali (red mud leachate) as driving solution led to excellent ammonium recovery performances (recovery efficiency of >80%), comparable to those of NaOH solution. When the initial ammonium concentration was 5 and 50 mM, the waste alkali driven DD-OD process achieved acceptable NH4+-N flux density of 16.8 and 169 g N m-2 d-1, at energy cost as low as 8.38 and 2.06 kWh kg-1 N, respectively. Since this alkali driven DD-OD hybrid process is based on solute concentration (or partial pressure) gradient, it could be an energy-effective technology capable of treating wastewaters containing ammonium using waste alkali to realize nutrients recovery in a sustainable manner.


Assuntos
Compostos de Amônio , Destilação , Álcalis , Membranas Artificiais , Osmose , Diálise Renal , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...