Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
iScience ; 27(7): 110207, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38984200

RESUMO

Host specificity plays important roles in expanding the host range of rhizobia, while the genetic information responsible for host specificity remains largely unexplored. In this report, the roots of four symbiotic systems with notable different symbiotic phenotypes and the control were studied at four different post-inoculation time points by RNA sequencning (RNA-seq). The differentially expressed genes (DEGs) were divided into "found only in soybean or Lotus," "only expressed in soybean or Lotus," and "expressed in both hosts" according to the comparative genomic analysis. The distributions of enriched function ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways vary significantly in different symbiotic systems. Host specific genes account for the majority of the DEGs involved in response to stimulus, associated with plant-pathogen interaction pathways, and encoding resistance (R) proteins, the symbiotic nitrogen fixation (SNF) proteins and the target proteins in the SNF-related modules. Our findings provided molecular candidates for better understanding the mechanisms of symbiotic host-specificity.

2.
Phytomedicine ; 129: 155614, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692078

RESUMO

BACKGROUND: Cellular senescence is an emerging hallmark of cancers, primarily fuels cancer progression by expressing senescence-associated secretory phenotype (SASP). Caveolin-1 (CAV1) is a key mediator of cell senescence. Previous studies from our group have evidenced that the expression of CAV1 is downregulated by Celastrol (CeT). PURPOSE: To investigate the impact of CeT on cellular senescence and its subsequent influence on post-senescence-driven invasion, migration, and stemness of clear cell renal cell carcinoma (ccRCC). STUDY DESIGN AND METHODS: The expression levels of CAV1, canonical senescence markers, and markers associated with epithelial-mesenchymal transition (EMT) and stemness in clinical samples were assessed through Pearson correlation analysis. Senescent cell models were induced using DOX, and their impact on migration, invasion, and stemness was evaluated. The effects of CeT treatment on senescent cells and their pro-tumorigenic effects were examined. Subsequently, the underlying mechanism of CeT were explored using lentivirus transfection and CRISPR/Cas9 technology to silence CAV1. RESULTS: In human ccRCC clinical samples, the expression of the canonical senescence markers p53, p21, and p16 are associated with ccRCC progression. Senescent cells facilitated migration, invasion, and enhanced stemness in both ccRCC cells and ccRCC tumor-bearing mice. As expected, CeT treatment reduced senescence markers (p16, p53, p21, SA-ß-gal) and SASP factors (IL6, IL8, CXCL12), alleviating cell cycle arrest. However, it did not restore the proliferation of senescent cells. Additionally, CeT suppressed senescence-driven migration, invasion, and stemness. Further investigations into the underlying mechanism demonstrated that CAV1 is a critical mediator of cell senescence and represents a potential target for CeT to attenuate cellular senescence. CONCLUSIONS: This study presents a pioneering investigation into the intricate interplay between cellular senescence and ccRCC progression. We unveil a novel mechanism of CeT to mitigate cellular senescence by downregulating CAV1, thereby inhibiting the migration, invasion and stemness of ccRCC driven by senescent cells. These findings provide valuable insights into the underlying mechanisms of CeT and its potential as a targeted therapeutic approach for alleviating the aggressive phenotypes associated with senescent cells in ccRCC.


Assuntos
Carcinoma de Células Renais , Caveolina 1 , Senescência Celular , Transição Epitelial-Mesenquimal , Triterpenos Pentacíclicos , Caveolina 1/metabolismo , Senescência Celular/efeitos dos fármacos , Humanos , Triterpenos Pentacíclicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Triterpenos/farmacologia , Movimento Celular/efeitos dos fármacos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Camundongos
3.
Ageing Res Rev ; 97: 102294, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583577

RESUMO

Cellular senescence is a kind of cellular state triggered by endogenous or exogenous stimuli, which is mainly characterized by stable cell cycle arrest and complex senescence-associated secretory phenotype (SASP). Once senescent cells accumulate in tissues, they may eventually accelerate the progression of age-related diseases, such as atherosclerosis, osteoarthritis, chronic lung diseases, cancers, etc. Recent studies have shown that the disorders of lipid metabolism are not only related to age-related diseases, but also regulate the cellular senescence process. Based on existing research evidences, the changes in lipid metabolism in senescent cells are mainly concentrated in the metabolic processes of phospholipids, fatty acids and cholesterol. Obviously, the changes in lipid-metabolizing enzymes and proteins involved in these pathways play a critical role in senescence. However, the link between cellular senescence, changes in lipid metabolism and age-related disease remains to be elucidated. Herein, we summarize the lipid metabolism changes in senescent cells, especially the senescent cells that promote age-related diseases, as well as focusing on the role of lipid-related enzymes or proteins in senescence. Finally, we explore the prospect of lipids in cellular senescence and their potential as drug targets for preventing and delaying age-related diseases.


Assuntos
Envelhecimento , Senescência Celular , Metabolismo dos Lipídeos , Humanos , Senescência Celular/fisiologia , Metabolismo dos Lipídeos/fisiologia , Envelhecimento/metabolismo , Animais , Lipídeos/fisiologia
4.
Shock ; 61(6): 915-923, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662592

RESUMO

ABSTRACT: ß 3 -adrenergic receptor (ß 3 -AR) has been proposed as a new therapy for several myocardial diseases. However, the effect of ß 3 -AR activation on sepsis-induced myocardial apoptosis is unclear. Here, we investigated the effect of ß 3 -AR activation on the cardiomyocyte apoptosis and cardiac dysfunction in cecal ligation and puncture (CLP)-operated rats and lipopolysaccharide (LPS)-treated cardiomyocytes. We found that ß 3 -AR existed both in adult rat ventricular myocytes (ARVMs) and H9c2 cells. The expression of ß 3 -AR was upregulated in LPS-treated ARVMs and the heart of CLP rats. Pretreatment with ß 3 -AR agonist, BRL37344, inhibited LPS-induced cardiomyocyte apoptosis and caspase-3, -8, and -9 activation in ARVMs. BRL37344 also reduced apoptosis and increased the protein levels of PI3K, p-Akt Ser473 and p-eNOS Ser1177 in LPS-treated H9c2 cells. Inhibition of PI3K using LY294002 abolished the inhibitory effect of BRL37344 on LPS-induced caspase-3, -8, and -9 activation in H9c2 cells. Furthermore, administration of ß 3 -AR antagonist, SR59230A (5 mg/kg), significantly decreased the maximum rate of left ventricular pressure rise (+dP/dt) in CLP-induced septic rats. SR59230A not only increased myocardial apoptosis, reduced p-Akt Ser473 and Bcl-2 contents, but also increased mitochondrial Bax, cytoplasm cytochrome c, cleaved caspase-9, and cleaved caspase-3 levels of the myocardium in septic rats. These results suggest that endogenous ß 3 -AR activation alleviates sepsis-induced cardiomyocyte apoptosis via PI3K/Akt signaling pathway and maintains intrinsic myocardial systolic function in sepsis.


Assuntos
Apoptose , Miócitos Cardíacos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 3 , Sepse , Transdução de Sinais , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Apoptose/efeitos dos fármacos , Sepse/metabolismo , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Receptores Adrenérgicos beta 3/metabolismo , Lipopolissacarídeos/toxicidade , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Linhagem Celular , Etanolaminas
5.
Nat Commun ; 15(1): 3310, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632249

RESUMO

Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is a devastating disease that is present in all major soybean-producing regions. The limited availability of resistant germplasm has resulted in a scarcity of commercial soybean cultivars that are resistant to the disease. To date, only the Chinese soybean landrace SX6907 has demonstrated an immune response to ASR. In this study, we present the isolation and characterization of Rpp6907-7 and Rpp6907-4, a gene pair that confer broad-spectrum resistance to ASR. Rpp6907-7 and Rpp6907-4 encode atypic nucleotide-binding leucine-rich repeat (NLR) proteins that are found to be required for NLR-mediated immunity. Genetic analysis shows that only Rpp6907-7 confers resistance, while Rpp6907-4 regulates Rpp6907-7 signaling activity by acting as a repressor in the absence of recognized effectors. Our work highlights the potential value of using Rpp6907 in developing resistant soybean cultivars.


Assuntos
Phakopsora pachyrhizi , Glycine max , Genes de Plantas , Doenças das Plantas/genética
6.
Eur J Phys Rehabil Med ; 60(2): 319-330, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358464

RESUMO

BACKGROUND: Motor control exercise (MCE) is effective in alleviating non-specific chronic low back pain (NCLBP). Neuro-imaging research is warranted to explore the underlying neural mechanisms of MCE. AIM: We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the central mechanism underpinning the effects of MCE in patients with NCLBP. DESIGN: A randomized, single-blinded, controlled trial. SETTING: The setting was out-patient and community. POPULATION: Fifty-eight patients with NCLBP. METHODS: Patients were randomized into the MCE or manual therapy (MT) group. All the participants completed pain-related clinical assessments and rs-fMRI scans before and after intervention. We performed exploratory whole-brain analyses in regional homogeneity (ReHo) and resting-state functional connectivity (rsFC) with significant post-pre differences in ReHo before and after intervention, and investigated associations between imaging and pain-related clinical assessments. RESULTS: Compared with the MT group, a greater alleviation in pain intensity and disability was observed in the MCE group after intervention, and was sustained at the 6-month follow-up (P<0.001). Only the MCE group showed increased ReHo values in the right pre-central gyrus and decreased ReHo values in the bilateral posterior cerebellum (voxel level P<0.001, cluster-level FWE corrected P<0.05). Decreased rsFC of the right posterior cerebellum-left superior parietal gyrus and left insula were significantly positively associated with pain-related disability (voxel level P<0.001, cluster-level FWE corrected P<0.05). CONCLUSIONS: These findings demonstrated that MCE had superior effects in relieving pain and pain-related disability, which might be associated with its modulation of rsFC between the cerebellum and areas involved in sensory-discriminative processing of noxious and somato-sensory stimuli, affection, and cognition. CLINICAL REHABILITATION IMPACT: This study provided preliminary evidence that MCE might alleviate NCLBP through its modulation of the function of brain areas related to chronic pain and postural control. Those results support MCE's clinical application and help physiotherapists to provide better multidisciplinary interventions with the combination of MCE and other first-line treatments.


Assuntos
Dor Crônica , Dor Lombar , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/terapia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Dor Crônica/diagnóstico por imagem , Dor Crônica/terapia , Exercício Físico
7.
Clin Neurophysiol ; 158: 43-55, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38176157

RESUMO

OBJECTIVE: This study aimed to explore the effect of catechol-O-methyltransferase (COMT) Val158Met and brain-derived neurotrophic factor (BDNF) Val66Met to post-stroke cognitive impairment (PSCI) and the interaction with transcranial direct current stimulation (tDCS). METHODS: Seventy-six patients with PSCI were randomly assigned to Group (1) (n = 38) to receive anodal tDCS of left dorsolateral prefrontal cortex or Group (2) (n = 38) to receive sham stimulation. The intensity of the tDCS was 2 mA, and the stimulations were applied over the left DLPFC for 10 sessions. The Montreal Cognitive Assessment (MoCA) and backward digit span test (BDST) were assessed before, immediately after, and one month after stimulation. RESULTS: After stimulation, patients in the tDCS group showed better improvement in both MoCA and BDST than those in the sham group. The results of GLMs also supported the main effects of tDCS on general cognitive function and working memory. Then we found that COMT genotype may have a main effect on the improvement of MoCA and BDST, and there may be an interaction between COMT genotype and tDCS in enhancing BDST. In contrast, BDNF genotype showed no significant main or interaction effects on any scales. CONCLUSIONS: These findings demonstrate that tDCS can improve cognition after stroke. Gene polymorphisms of COMT can affect the efficacy of tDCS on PSCI, but BDNF may not. SIGNIFICANCE: This study found that COMT Val158Met has an interaction on the efficacy of prefrontal tDCS in cognitive function, which provides reference for future tDCS research and clinical application.


Assuntos
Disfunção Cognitiva , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Catecol O-Metiltransferase/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Córtex Pré-Frontal/fisiologia , Cognição , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia , Método Duplo-Cego
8.
Pain Physician ; 27(1): E55-E64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38285031

RESUMO

BACKGROUND: Motor control exercise (MCE) effectively alleviates nonspecific chronic low back pain (CLBP), but the neural mechanisms underlying this phenomenon are poorly understood. OBJECTIVE: To study MCE's neural mechanisms in patients with CLBP by resting-state functional magnetic resonance imaging (rs-fMRI). STUDY DESIGN: A prospective, single-blind, randomized, controlled trial. SETTING: Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University. METHODS: 58 patients were randomly assigned to either the MCE or the Manual Therapy (MT) group. Before and after treatment, all the patients underwent ultrasound imaging to measure transversus abdominis (TrA) activation, rs-fMRI scans and questionnaire assessments. We analyzed the activation and connectivity of the bilateral precuneus based on the fractional amplitude of low-frequency fluctuation (fALFF) and effective connectivity (EC) analyses. Further, we determined the association between imaging and clinical measures. RESULTS: Pain intensity, pain catastrophizing, and pain-related disability were alleviated significantly in both groups post-treatment. However, the MCE group showed a greater reduction in pain-related disability and a better improvement in activation of the right TrA than the MT group. After MCE, patients showed an increase in regional fALFF values in the key node of the default mode network (bilateral precuneus) and decreased EC from the bilateral precuneus to the key node of the frontoparietal network (the left dorsolateral prefrontal cortex (DLPFC)). The pre-to-post-treatment change in the EC from bilateral precuneus into the left DLPFC was significantly correlated with the pre-to-post-treatment change in visual analog scale scores and activation of the right TrA in the MCE group (r = 0.765, P < 0.001 and r = 0.481 and P = 0.043 respectively). LIMITATIONS: The present study showes the correlation between the alteration of brain functions and CLBP-related symptoms, which does not reveal the causal effect between them. Further, this study does not estimate the long-term efficacy of MCE on brain function, and the sample size was not calculated based on fMRI data. CONCLUSION: These findings demonstrate that MCE may alleviate CLBP symptoms in patients by modifying information transmission from the default mode network to the left frontoparietal network.


Assuntos
Dor Lombar , Humanos , Dor Lombar/terapia , Rede de Modo Padrão , Estudos Prospectivos , Método Simples-Cego , Plasticidade Neuronal
9.
Biomed Pharmacother ; 170: 115993, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091635

RESUMO

Cardiomyopathy is a common complication and significantly increases the risk of death in septic patients. Our previous study demonstrated that post-treatment with dexmedetomidine (DEX) aggravates septic cardiomyopathy. However, the mechanisms for the side effect of DEX post-treatment on septic cardiomyopathy are not well-defined. Here we employed a cecal ligation and puncture (CLP) model and α2A-adrenoceptor deficient (Adra2a-/-) mice to observe the effects of DEX post-treatment on myocardial metabolic disturbances in sepsis. CLP mice displayed significant cardiac dysfunction, altered mitochondrial dynamics, reduced cardiac lipid and glucose uptake, impaired fatty acid and glucose oxidation, enhanced glycolysis and decreased ATP production in the myocardium, almost all of which were dramatically enhanced by DEX post-treatment in septic mice. In Adra2a-/- mice, DEX post-treatment did not affect cardiac dysfunction and metabolic disruptions in CLP-induced sepsis. Additionally, Adra2a-/- mice exhibited impaired cardiac function, damaged myocardial mitochondrial structures, and disturbed fatty acid metabolism and glucose oxidation. In sum, DEX post-treatment exacerbates metabolic disturbances in septic cardiomyopathy in a α2A-adrenoceptor dependent manner.


Assuntos
Cardiomiopatias , Dexmedetomidina , Cardiopatias , Sepse , Humanos , Camundongos , Animais , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Cardiopatias/tratamento farmacológico , Sepse/tratamento farmacológico , Glucose/uso terapêutico , Ácidos Graxos
10.
Biochem Pharmacol ; 217: 115806, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37714273

RESUMO

Sepsis is a dysregulated systemic inflammatory response caused by infection that leads to multiple organ injury and high mortality without effective treatment. Corilagin, a natural polyphenol extracted from traditional Chinese herbs, exhibits strong anti-inflammatory properties. However, the role for Corilagin in lipopolysaccharide (LPS)-induced sepsis and the molecular mechanisms underlying this process have not been completely explored. Here we determine the effect of Corilagin on LPS-treated mice and use a screening approach integrating surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS) to further explore the therapeutic target of Corilagin. We discovered that Corilagin significantly prolonged the survival time of septic mice, attenuated the multi-organ injury and the expression of pyroptosis-related proteins in tissues of LPS-treated mice. In vitro studies revealed that Corilagin inhibited pyroptosis and NLRP3 inflammasome activation in LPS-treated macrophages followed with ATP stimulation, as reflected by decreased levels of GSDMD-NT and activated caspase-1, and reduced ASC specks formation. Mechanistically, Corilagin alleviated the formation of ASC specks and blocked the interaction of ASC and pro-caspase1 by competitively binding with the caspase recruitment domain (CARD) of ASC. Additionally, Corilagin interrupted the TLR4-MyD88 interaction through targeting TIR domain of MyD88, leading to the inhibition of NF-κB activation and NLRP3 production. In addition, Corilagin downregulated genes associated with several inflammatory responses and inflammasome-related signaling pathways in LPS-stimulated macrophages. Overall, our results indicate that the inhibitory effect of Corilagin on pyroptosis through targeting TIR domain of MyD88 and binding the CARD domain of ASC in macrophages plays an essential role in protection against LPS-induced sepsis.


Assuntos
Inflamassomos , Sepse , Animais , Camundongos , Domínio de Ativação e Recrutamento de Caspases , Cromatografia Líquida , Inflamassomos/metabolismo , Lipopolissacarídeos , Macrófagos , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Sepse/metabolismo , Espectrometria de Massas em Tandem
11.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686258

RESUMO

Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most destructive foliar diseases that affect soybeans. Developing resistant cultivars is the most cost-effective, environmentally friendly, and easy strategy for controlling the disease. However, the current understanding of the mechanisms underlying soybean resistance to P. pachyrhizi remains limited, which poses a significant challenge in devising effective control strategies. In this study, comparative transcriptomic profiling using one resistant genotype and one susceptible genotype was performed under infected and control conditions to understand the regulatory network operating between soybean and P. pachyrhizi. RNA-Seq analysis identified a total of 6540 differentially expressed genes (DEGs), which were shared by all four genotypes. The DEGs are involved in defense responses, stress responses, stimulus responses, flavonoid metabolism, and biosynthesis after infection with P. pachyrhizi. A total of 25,377 genes were divided into 33 modules using weighted gene co-expression network analysis (WGCNA). Two modules were significantly associated with pathogen defense. The DEGs were mainly enriched in RNA processing, plant-type hypersensitive response, negative regulation of cell growth, and a programmed cell death process. In conclusion, these results will provide an important resource for mining resistant genes to P. pachyrhizi infection and valuable resources to potentially pyramid quantitative resistance loci for improving soybean germplasm.


Assuntos
Phakopsora pachyrhizi , Transcriptoma , RNA-Seq , Phakopsora pachyrhizi/genética , Glycine max/genética , Resistência à Doença/genética , Genótipo
12.
Pain Res Manag ; 2023: 2028379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693681

RESUMO

Purpose: Deficits in voluntary activation of the core stabilizing muscles are consistently observed in patients with chronic low back pain (CLBP); however, the underlying neural mechanism remains unclear. This cross-sectional study aimed at testing the hypothesis that the impaired voluntary activation of core stabilizing muscles is associated with structural and functional alterations in the basal ganglia, thalamus, and cortex in patients with CLBP. Methods: We obtained structural and resting-state functional magnetic resonance imaging (rs-fMRI) data from 53 patients with CLBP and 67 healthy controls and estimated the alterations in grey matter volume (GMV) and functional and effective connectivity (EC) of regions with altered GMV via whole brain analysis. The voluntary activation of the multifidus (MF) and transversus abdominis (TrA) was evaluated by ultrasound imaging in these patients. Results: Compared with the HCs, they displayed a significant decrease in GMV in the bilateral thalamus and caudate nucleus, a significant increase in GMV in the left middle frontal gyrus, and increased resting-state functional connectivity between the right caudate nucleus and the bilateral precuneus (voxel-level p < 0.005, Gaussian random field-corrected p < 0.05). The patients also showed increased EC from the right caudate nucleus to the bilateral precuneus, which was significantly correlated with voluntary activation of the bilateral MF and TrA (all p < 0.050). Conclusions: Grey matter alterations may be confined to regions responsible for perception, motor control, and emotion regulation in patients with CLBP. The interrupted EC from the basal ganglia to the default mode network might be involved in the impairment of voluntary activation of the core stabilizing muscles.


Assuntos
Dor Lombar , Humanos , Dor Lombar/diagnóstico por imagem , Estudos Transversais , Gânglios da Base/diagnóstico por imagem , Músculos Abdominais/diagnóstico por imagem , Encéfalo
13.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629058

RESUMO

Sucrose metabolism plays a critical role in development, stress response, and yield formation of plants. Sucrose phosphate synthase (SPS) is the key rate-limiting enzyme in the sucrose synthesis pathway. To date, genome-wide survey and comprehensive analysis of the SPS gene family in soybean (Glycine max) have yet to be performed. In this study, seven genes encoding SPS were identified in soybean genome. The structural characteristics, phylogenetics, tissue expression patterns, and cold stress response of these GmSPSs were investigated. A comparative phylogenetic analysis of SPS proteins in soybean, Medicago truncatula, Medicago sativa, Lotus japonicus, Arabidopsis, and rice revealed four families. GmSPSs were clustered into three families from A to C, and have undergone five segmental duplication events under purifying selection. All GmSPS genes had various expression patterns in different tissues, and family A members GmSPS13/17 were highly expressed in nodules. Remarkably, all GmSPS promoters contain multiple low-temperature-responsive elements such as potential binding sites of inducer of CBF expression 1 (ICE1), the central regulator in cold response. qRT-PCR proved that these GmSPS genes, especially GmSPS8/18, were induced by cold treatment in soybean leaves, and the expression pattern of GmICE1 under cold treatment was similar to that of GmSPS8/18. Further transient expression analysis in Nicotiana benthamiana and electrophoretic mobility shift assay (EMSA) indicated that GmSPS8 and GmSPS18 transcriptions were directly activated by GmICE1. Taken together, our findings may aid in future efforts to clarify the potential roles of GmSPS genes in response to cold stress in soybean.


Assuntos
Arabidopsis , Glycine max , Glycine max/genética , Resposta ao Choque Frio/genética , Filogenia , Sítios de Ligação
14.
Plant Physiol Biochem ; 202: 107915, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536218

RESUMO

Kunitz-like protease inhibitors (KTIs) have been identified to play critical roles in insect defense, but evidence for their involvement in drought stress is sparse. The aim of this study was to identify and functionally characterize a Kunitz-like protease inhibitor, GsKTI, from the wild soybean (Glycine soja) variety ED059. Expression patterns suggest that drought stress and insect herbivory may induce GsKTI transcript levels. Transgenic Arabidopsis lines overexpressing GsKTI have been shown to exhibit enhanced drought tolerance by regulating the ABA signaling pathway and increasing xylem cell number. Transgenic Arabidopsis leaves overexpressing GsKTI interfered with insect digestion and thus had a negative effect on the growth of Helicoverpa armigera. It is concluded that GsKTI increases resistance to drought stress and insect attack in transgenic Arabidopsis lines.


Assuntos
Arabidopsis , Fabaceae , Mariposas , Animais , Arabidopsis/metabolismo , Glycine max/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Secas , Proteínas de Plantas/genética , Fabaceae/metabolismo , Mariposas/metabolismo , Glicina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
15.
J Exp Bot ; 74(18): 5820-5839, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37470327

RESUMO

The gene networks surrounding Nod factor receptors that govern the symbiotic process between legumes and rhizobia remain largely unexplored. Here, we identify 13 novel GmNFR1α-associated proteins by yeast two-hybrid screening, and describe a potential interacting protein, GmBI-1α. GmBI-1α had the highest positive correlation with GmNFR1α in a co-expression network analysis, and its expression at the mRNA level in roots was enhanced by rhizobial infection. Moreover, GmBI-1α-GmNFR1α interaction was shown to occur in vitro and in vivo. The GmBI-1α protein was localized to multiple subcellular locations, including the endoplasmic reticulum and plasma membrane. Overexpression of GmBI-1α increased the nodule number in transgenic hairy roots or transgenic soybean, whereas down-regulation of GmBI-1α transcripts by RNA interference reduced the nodule number. In addition, the nodules in GmBI-1α-overexpressing plants became smaller in size and infected area with reduced nitrogenase activity. In GmBI-1α-overexpressing transgenic soybean, the elevated GmBI-1α also promoted plant growth and suppressed the expression of defense signaling-related genes. Infection thread analysis of GmBI-1α-overexpressing plants showed that GmBI-1α promoted rhizobial infection. Collectively, our findings support a GmNFR1α-associated protein in the Nod factor signaling pathway and shed new light on the regulatory mechanism of GmNFR1α in rhizobial symbiosis.


Assuntos
Fabaceae , Rhizobium , Simbiose/genética , Fabaceae/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Glycine max/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nodulação/genética
16.
Biomed Pharmacother ; 164: 114981, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285754

RESUMO

Lipid metabolism disorders are pivotal in the development of various lipid-related diseases, such as obesity, atherosclerosis, non-alcoholic fatty liver disease, type 2 diabetes, and cancer. Celastrol, a bioactive compound extracted from the Chinese herb Tripterygium wilfordii Hook F, has recently demonstrated potent lipid-regulating abilities and promising therapeutic effects for lipid-related diseases. There is substantial evidence indicating that celastrol can ameliorate lipid metabolism disorders by regulating lipid profiles and related metabolic processes, including lipid synthesis, catabolism, absorption, transport, and peroxidation. Even wild-type mice show augmented lipid metabolism after treatment with celastrol. This review aims to provide an overview of recent advancements in the lipid-regulating properties of celastrol, as well as to elucidate its underlying molecular mechanisms. Besides, potential strategies for targeted drug delivery and combination therapy are proposed to enhance the lipid-regulating effects of celastrol and avoid the limitations of its clinical application.


Assuntos
Diabetes Mellitus Tipo 2 , Triterpenos Pentacíclicos , Triterpenos , Animais , Camundongos , Metabolismo dos Lipídeos , Lipídeos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/metabolismo
17.
Int J Biol Sci ; 19(8): 2333-2348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215994

RESUMO

Pyroptosis is a novel pro-inflammatory cell programmed death dependent on Gasdermin (GSMD) family-mediated membrane pore formation and subsequent cell lysis, accompanied by the release of inflammatory factors and expanding inflammation in multiple tissues. All of these processes have impacts on a variety of metabolic disorders. Dysregulation of lipid metabolism is one of the most prominent metabolic alterations in many diseases, including the liver, cardiovascular system, and autoimmune diseases. Lipid metabolism produces many bioactive lipid molecules, which are important triggers and endogenous regulators of pyroptosis. Bioactive lipid molecules promote pyroptosis through intrinsic pathways involving reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, lysosomal disruption, and the expression of related molecules. Pyroptosis can also be regulated during the processes of lipid metabolism, including lipid uptake and transport, de novo synthesis, lipid storage, and lipid peroxidation. Taken together, understanding the correlation between lipid molecules such as cholesterol and fatty acids and pyroptosis during metabolic processes can help to gain insight into the pathogenesis of many diseases and develop effective strategies from the perspective of pyroptosis.


Assuntos
Inflamassomos , Piroptose , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipídeos
18.
Bioorg Chem ; 134: 106454, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889199

RESUMO

Glutathione (GSH) is closely related to the occurrence and development of tumors. The intracellular GSH levels are abnormally altered when tumor cells undergo programmed cell death. Therefore, real-time monitoring of the dynamic changes of intracellular GSH levels can better enable the early diagnosis of diseases and evaluate the effects of cell death-inducing drugs. In this study, a stable and highly selective fluorescent probe AR has been designed and synthesized for the fluorescence imaging and rapid detection of GSH in vitro and in vivo, as well as patient-derived tumor tissue. More importantly, the AR probe can be used to track changes in GSH levels and fluorescence imaging during the treatment of clear cell renal cell carcinoma (ccRCC) with celastrol (CeT) via inducing ferroptosis. These findings demonstrate that the developed fluorescent probe AR exhibits high selectivity and sensitivity, as well as good biocompatibility and long-term stability, which can be used to image endogenous GSH in living tumors and cells. Also, a significant decrease in GSH levels was observed by the fluorescent probe AR during the treatment of ccRCC with CeT-induced ferroptosis in vitro and in vivo. Overall, these findings will provide a novel strategy for celastrol targeting ferroptosis in the treatment of ccRCC and the application of fluorescent probes to help reveal the underlying mechanism of CeT in the treatment of ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Ferroptose , Neoplasias Renais , Humanos , Corantes Fluorescentes/farmacologia , Glutationa/metabolismo
19.
Anal Chim Acta ; 1248: 340933, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36813462

RESUMO

High level of intracellular glutathione (GSH) has been identified as a major barrier for cancer therapy. Therefore, effective regulation of GSH can be regarded as a novel approach for cancer therapy. In this study, an off-on fluorescent probe (NBD-P) is developed for selective and sensitive sensing GSH. NBD-P has a good cell membrane permeability that can be applied in bioimaging endogenous GSH in living cells. Moreover, the NBD-P probe is used to visualize GSH in animal models. In addition, a rapid drug screening method is successfully established using the fluorescent probe NBD-P. A potent natural inhibitor of GSH is identified as Celastrol from Tripterygium wilfordii Hook F, which effectively triggers mitochondrial apoptosis in clear cell renal cell carcinoma (ccRCC). More importantly, NBD-P can selectively respond to GSH fluctuations to distinguish cancer tissues from normal tissues. Thus, the present study provides insights into fluorescence probes for the screening GSH inhibitors and cancer diagnosis, as well as in-depth exploration of the anti-cancer effects of Traditional Chinese Medicine (TCM).


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Corantes Fluorescentes , Medicina de Precisão , Glutationa/metabolismo
20.
Int Immunopharmacol ; 116: 109724, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696856

RESUMO

BACKGROUND: Dexmedetomidine (DEX) administered before or at 30 min after sepsis induction was reported to alleviate septic cardiomyopathy in experimental models. However, sepsis is a life-threatening organ dysfunction due to infection-induced dysregulated host response, whether DEX treatment in the presence of organ dysfunction affects septic cardiomyopathy is unknown. This study investigated the effect of DEX posttreatment on septic cardiomyopathy. METHODS: Male wild-type and α2A-adrenergic receptor (AR) knockout mice were exposed to lipopolysaccharide (LPS) or cecal ligation puncture (CLP), and cultured cardiac endothelial cells were used. Mouse survival, myocardial function, inflammatory response and related signaling pathways were determined. RESULTS: DEX treatment at 6, 9 h after LPS challenge significantly reduced survival rate of LPS-challenged mice, especially at 9 h. DEX administered at 9 h after LPS injection or CLP significantly reduced survival in LPS or CLP-induced sepsis in wild-type mice, but not in α2A-AR knockout mice. LPS treatment for 20 h decreased the left ventricle + dp/dt, increased myocardial interleukin (IL)-1ß and IL-6 concentrations as well as cardiac endothelial tumor necrosis factor (TNF)-α, vascular cell adhesion molecule-1 (VCAM-1) and ICAM-1 expression, which were enhanced by DEX treated at 9 h after LPS injection in wild-type mice, but not in α2A-AR knockout mice. Furthermore, DEX posttreatment increased p38 phosphorylation, c-Fos nuclear translocation and VCAM-1 expression in LPS-treated cardiac endothelial cells, which were eliminated by α2A-AR knockout or PKC inhibitor. CONCLUSIONS: DEX posttreatment aggravates LPS-induced cardiac inflammation and myocardial dysfunction, at least in part, via activating cardiac endothelial α2A-AR-mediated PKC signal pathway.


Assuntos
Cardiomiopatias , Dexmedetomidina , Sepse , Camundongos , Masculino , Animais , Lipopolissacarídeos/farmacologia , Dexmedetomidina/uso terapêutico , Dexmedetomidina/farmacologia , Células Endoteliais/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Insuficiência de Múltiplos Órgãos , Fator de Necrose Tumoral alfa/metabolismo , Sepse/tratamento farmacológico , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...