Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3017, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589414

RESUMO

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light.

2.
Nat Commun ; 15(1): 245, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172558

RESUMO

Materials showing second-order nonlinear transport under time reversal symmetry can be used for Radio Frequency (RF) rectification, but practical application demands room temperature operation and sensitivity to microwatts level RF signals in the ambient. In this study, we demonstrate that BiTeBr exhibits a giant nonlinear response which persists up to 350 K. Through scaling and symmetry analysis, we show that skew scattering is the dominant mechanism. Additionally, the sign of the nonlinear response can be electrically switched by tuning the Fermi energy. Theoretical analysis suggests that the large Rashba spin-orbit interactions (SOI), which gives rise to the chirality of the Bloch electrons, provide the microscopic origin of the observed nonlinear response. Our BiTeBr rectifier is capable of rectifying radiation within the frequency range of 0.2 to 6 gigahertz at room temperature, even at extremely low power levels of -15 dBm, and without the need for external biasing. Our work highlights that materials exhibiting large Rashba SOI have the potential to exhibit nonlinear responses at room temperature, making them promising candidates for harvesting high-frequency and low-power ambient electromagnetic energy.

3.
Phys Rev Lett ; 128(2): 026402, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089739

RESUMO

Moiré heterobilayer transition metal dichalcogenides (TMDs) emerge as an ideal system for simulating the single-band Hubbard model and interesting correlated phases have been observed in these systems. Nevertheless, the moiré bands in heterobilayer TMDs were believed to be topologically trivial. Recently, it was reported that both a quantum valley Hall insulating state at filling ν=2 (two holes per moiré unit cell) and a valley-polarized quantum anomalous Hall state at filling ν=1 were observed in AB stacked moiré MoTe_{2}/WSe_{2} heterobilayers. However, how the topologically nontrivial states emerge is not known. In this Letter, we propose that the pseudomagnetic fields induced by lattice relaxation in moiré MoTe_{2}/WSe_{2} heterobilayers could naturally give rise to moiré bands with finite Chern numbers. We show that a time-reversal invariant quantum valley Hall insulator is formed at full filling ν=2, when two moiré bands with opposite Chern numbers are filled. At half filling ν=1, the Coulomb interaction lifts the valley degeneracy and results in a valley-polarized quantum anomalous Hall state, as observed in the experiment. Our theory identifies a new way to achieve topologically nontrivial states in heterobilayer TMD materials.

4.
Nat Commun ; 12(1): 3064, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031382

RESUMO

Recently, it was pointed out that all chiral crystals with spin-orbit coupling (SOC) can be Kramers Weyl semimetals (KWSs) which possess Weyl points pinned at time-reversal invariant momenta. In this work, we show that all achiral non-centrosymmetric materials with SOC can be a new class of topological materials, which we term Kramers nodal line metals (KNLMs). In KNLMs, there are doubly degenerate lines, which we call Kramers nodal lines (KNLs), connecting time-reversal invariant momenta. The KNLs create two types of Fermi surfaces, namely, the spindle torus type and the octdong type. Interestingly, all the electrons on octdong Fermi surfaces are described by two-dimensional massless Dirac Hamiltonians. These materials support quantized optical conductance in thin films. We further show that KNLMs can be regarded as parent states of KWSs. Therefore, we conclude that all non-centrosymmetric metals with SOC are topological, as they can be either KWSs or KNLMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...