Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Lung Cancer Res ; 13(5): 1084-1100, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38854940

RESUMO

Background: Vitamins, and their metabolic processes play essential regulatory roles in controlling proliferation, differentiation, and growth in carcinogenesis. However, the role of vitamin metabolism in lung adenocarcinoma (LUAD) has rarely been reported. Here, we established a novel prognostic model based on vitamin metabolism-related genes in LUAD. Methods: In this research, we aimed to identify vitamin metabolism associated with differentially expressed genes (DEGs) in LUAD utilizing The Cancer Genome Atlas (TCGA)-LUAD, GSE68465 and GSE72094 data. Unsupervised clustering classified patients into distinct subgroups. By utilizing least absolute shrinkage and selection operator (LASSO)-Cox regression analysis, vitamin metabolism-related genes could be used to construct prognostic model. Then the vitamin metabolism gene-related risk score (VRS) was calculated based on best cut-off splitting. Kaplan-Meier analysis, time-dependent receiver operating characteristic (ROC) analysis, univariate and multivariate Cox analyses, chemotherapeutic drugs sensitivity analysis, immune infiltration analysis and nomogram were conducted to verify our models' accuracy. Finally, CPS1 was identified as a relevant diagnostic marker using Random Forests algorithms, single-cell RNA sequencing data was used to confirm its expression. Results: We investigated the relationship between vitamin metabolism patterns, overall survival (OS), and immune infiltration levels of patients with LUAD. A prognostic signature consisting of 11 genes was developed, which was able to classify patients into high and low VRS groups. Through gene enrichment analysis, cell cycle was mainly enriched. Compared to the low VRS group, the high VRS group exhibited poorer OS, as demonstrated by the Kaplan-Meier survival analysis. Furthermore, VRS was identified as an independent predictor of poor prognosis and poor OS, as indicated by both univariate and multivariate Cox regression analyses. Additionally, a nomogram was constructed to improve the accuracy of survival predictions in LUAD patients. We also found that the two groups of patients might respond differently to immune targets and anti-tumor drugs. CPS1 was identified as a relevant diagnostic marker and the expression was also as confirmed by single-cell RNA sequencing data. Conclusions: Overall, our findings suggest that vitamin metabolism can influence the prognosis of LUAD patients, and our prognostic signature represents a potentially helpful resource for predicting patient outcomes and informing clinical decision-making.

2.
Nat Commun ; 13(1): 7275, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434000

RESUMO

AAV-delivered CRISPR/Cas9 (AAV-CRISPR) has shown promising potentials in preclinical models to efficiently insert therapeutic gene sequences in somatic tissues. However, the AAV input doses required were prohibitively high and posed serious risk of toxicity. Here, we performed AAV-CRISPR mediated homology-independent knock-in at a new target site in mAlb 3'UTR and demonstrated that single dose of AAVs enabled long-term integration and expression of hF9 transgene in both adult and neonatal hemophilia B mice (mF9 -/-), yielding high levels of circulating human Factor IX (hFIX) and stable hemostasis restoration during entire 48-week observation period. Furthermore, we achieved hemostasis correction with a significantly lower AAV dose (2 × 109 vg/neonate and 1 × 1010 vg/adult mouse) through liver-specific gene knock-in using hyperactive hF9R338L variant. The plasma antibodies against Cas9 and AAV in the neonatal mice receiving low-dose AAV-CRISPR were negligible, which lent support to the development of AAV-CRISPR mediated somatic knock-in for treating inherited diseases.


Assuntos
Hemofilia B , Camundongos , Animais , Humanos , Hemofilia B/genética , Hemofilia B/terapia , Edição de Genes , Sistemas CRISPR-Cas/genética , Formação de Anticorpos , Vetores Genéticos/genética , Hemostasia , Fígado
3.
J Oncol ; 2022: 9359879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385955

RESUMO

The sarcoendoplasmic reticulum calcium adenosine triphosphatase (ATPase) 3 (SERCA3), a member of the SERCA protein family, is located at the endoplasmic reticulum. Its main function is to pump Ca2+ into the endoplasmic reticulum and is involved in maintaining intracellular calcium homeostasis and signal transduction, which are very important factors impacting cancer development and progression. However, the specific role of SERCA3 in cancer remains unclear. Our study, for the first time, comprehensively analyzed the SERCA3 expression profile in multiple cancers and its prognostic value in different cancers using bioinformatics. Furthermore, TCGA database was applied to evaluate the certain correlation of SERCA3 expression with immune modulator genes, immune checkpoints, immune cell infiltration, TMB, and MSI. The results revealed that in many cancers, SERCA3 expression was markedly decreased, which was related to poor prognosis. Additionally, we noticed that SERCA3 expression was correlated with TNM classification and WHO cancer stages in some cancer types. The Pearson correlation analysis showed that SERCA3 expression was closely associated with chemokines, chemokine receptors, MHC, immune activation genes, and immunosuppressive genes. In most cancer types, SERCA3 expression was also associated with immune checkpoints, including PDCD1 and CTLA-4. Further analysis suggested that SERCA3 was significantly correlated with CD8+ T cells, and regulatory T cells. Additionally, pan-cancer analysis confirmed that SERCA3 expression was related to TMB and MSI. In conclusion, these results offer a new insight into the functions and effects of SERCA3 in pan-cancer, and further provide some basis for considering SERCA3 as a potential cancer treatment target and biomarker.

4.
Biomed Res Int ; 2021: 9897654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34931170

RESUMO

[This corrects the article DOI: 10.1155/2020/8379526.].

5.
Front Cell Dev Biol ; 9: 817085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127727

RESUMO

The Golgi apparatus (GA) is a cellular organelle that participates in the packaging, modification, and transport of proteins and lipids from the endoplasmic reticulum to be further fabricated before being presented to other cellular components. Recent studies have demonstrated that GA facilitates numerous cellular processes in cancer development. Therefore, this study aimed to establish a novel lung adenocarcinoma (LUAD) risk evaluation model based on GA gene signatures. In this study, we used TCGA-LUAD (n = 500) as the training cohort and GSE50081 (n = 127), GSE68465 (442), and GSE72094 (398) as the validation cohorts. Two immunotherapy datasets (GSE135222 and GSE126044) were also obtained from a previous study. Based on machine algorithms and bioinformatics methods, a GA gene-related risk score (GARS) was established. We found that the GARS independently predicted the prognosis of LUAD patients and remained effective across stages IA to IIIA. Then, we identified that the GARS was highly correlated with mutations in P53 and TTN. Further, this study identified that GARS is related to multiple immune microenvironmental characteristics. Furthermore, we investigated GSE135222 and GSE126044 and found that a lower GARS may be indicative of an improved therapeutic effect of PD-1/PD-L1 therapy. We also found that high GARS may lead to a better response to multiple anticancer drugs. Finally, we established a nomogram to better guide clinical application. To our knowledge, this is the first study to demonstrate a novel GA signature-based risk score formula to predict clinical prognosis and guide the treatment of LUAD patients.

6.
Biomed Res Int ; 2020: 8379526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33274224

RESUMO

OBJECTIVES: Disruption of microbial biofilms is an effective way to control dental caries. Drug resistance and side effects of the existing antimicrobials necessitate the development of novel antibacterial agents. The current study was aimed at investigating the antibacterial activities of the repurposed natural compound napabucasin against oral streptococci. METHODS: The minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibition concentration, and minimum biofilm reduction concentration of Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were examined by a microdilution method. Cytotoxicity of napabucasin against human oral keratinocytes, human gingival epithelia, and macrophage RAW264.7 was evaluated by CCK8 assays. The dead/live bacterium and exopolysaccharide in the napabucasin-treated multispecies biofilms were evaluated by confocal laser scanning microscopy. Microbial composition within the napabucasin-treated biofilms was further visualized by fluorescent in situ hybridization and qPCR. And the cariogenicity of napabucasin-treated biofilms was evaluated by transverse microradiography. RESULTS: Napabucasin exhibited good antimicrobial activity against oral streptococcal planktonic cultures and biofilms but with lessened cytotoxicity as compared to chlorhexidine. Napabucasin reduced the cariogenic S. mutans and increased the proportion of the commensal S. gordonii in the multispecies biofilms. More importantly, napabucasin significantly reduced the demineralization capability of biofilms on tooth enamels. CONCLUSION: Napabucasin shows lessened cytotoxicity and comparable antimicrobial effects to chlorhexidine. Repurposing napabucasin may represent a promising adjuvant for the management of dental caries.


Assuntos
Anti-Infecciosos/farmacologia , Benzofuranos/farmacologia , Biofilmes/efeitos dos fármacos , Boca/microbiologia , Naftoquinonas/farmacologia , Streptococcus/fisiologia , Anti-Infecciosos/química , Benzofuranos/química , Clorexidina/farmacologia , Esmalte Dentário/microbiologia , Células Epiteliais/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Naftoquinonas/química , Streptococcus/efeitos dos fármacos , Desmineralização do Dente/microbiologia
7.
PLoS Pathog ; 16(7): e1008774, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716974

RESUMO

S-glutathionylation is an important post-translational modification (PTM) process that targets protein cysteine thiols by the addition of glutathione (GSH). This modification can prevent proteolysis caused by the excessive oxidation of protein cysteine residues under oxidative or nitrosative stress conditions. Recent studies have suggested that protein S-glutathionylation plays an essential role in the control of cell-signaling pathways by affecting the protein function in bacteria and even humans. In this study, we investigated the effects of S-glutathionylation on physiological regulation within Streptococcus mutans, the primary etiological agent of human dental caries. To determine the S-glutathionylated proteins in bacteria, the Cys reactive isobaric reagent iodoacetyl Tandem Mass Tag (iodoTMT) was used to label the S-glutathionylated Cys site, and an anti-TMT antibody-conjugated resin was used to enrich the modified peptides. Proteome profiling identified a total of 357 glutathionylated cysteine residues on 239 proteins. Functional enrichment analysis indicated that these S-glutathionylated proteins were involved in diverse important biological processes, such as pyruvate metabolism and glycolysis. Furthermore, we studied a thioredoxin-like protein (Tlp) to explore the effect of S-glutathionylation on interspecies competition between oral streptococcal biofilms. Through site mutagenesis, it was proved that glutathionylation on Cys41 residue of Tlp is crucial to protect S. mutans from oxidative stress and compete with S. sanguinis and S. gordonii. An addition rat caries model showed that the loss of S-glutathionylation attenuated the cariogenicity of S. mutans. Taken together, our study provides an insight into the S-glutathionylation of bacterial proteins and the regulation of oxidative stress resistance and interspecies competition.


Assuntos
Cárie Dentária/microbiologia , Interações Microbianas/fisiologia , Streptococcus mutans/metabolismo , Streptococcus mutans/patogenicidade , Tiorredoxinas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Biofilmes , Cárie Dentária/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Ratos
8.
J Cell Mol Med ; 24(6): 3256-3270, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32037739

RESUMO

The CRISPR-Cas technologies derived from bacterial and archaeal adaptive immune systems have emerged as a series of groundbreaking nucleic acid-guided gene editing tools, ultimately standing out among several engineered nucleases because of their high efficiency, sequence-specific targeting, ease of programming and versatility. Facilitated by the advancement across multiple disciplines such as bioinformatics, structural biology and high-throughput sequencing, the discoveries and engineering of various innovative CRISPR-Cas systems are rapidly expanding the CRISPR toolbox. This is revolutionizing not only genome editing but also various other types of nucleic acid-guided manipulations such as transcriptional control and genomic imaging. Meanwhile, the adaptation of various CRISPR strategies in multiple settings has realized numerous previously non-existing applications, ranging from the introduction of sophisticated approaches in basic research to impactful agricultural and therapeutic applications. Here, we summarize the recent advances of CRISPR technologies and strategies, as well as their impactful applications.


Assuntos
Archaea/genética , Bactérias/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Endonucleases/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Guia de Cinetoplastídeos/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-30858201

RESUMO

Biofilm control is a critical approach to the better management of dental caries. Antimicrobial small molecules have shown their potential in the disruption of oral biofilm and control of dental caries. The objectives of this study were to examine the antimicrobial activity and cytotoxicity of a newly designed small-molecule compound, ZY354. ZY354 was synthesized, and its cytotoxicity was evaluated in human oral keratinocytes (HOK), human gingival epithelial cells (HGE), and macrophages (RAW) by CCK-8 assays. Minimal inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), minimum biofilm inhibition concentrations (MBICs), and minimum biofilm reduction concentrations (MBRCs) of ZY354 against common oral streptococci (i.e., Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis) were determined by microdilution method. The exopolysaccharide (EPS)/bacterium ratio and the dead/live bacterium ratio in the ZY354-treated multispecies biofilms were determined by confocal laser scanning microscopy, and the microbial composition was visualized and quantified by fluorescent in situ hybridization and quantitative PCR (qPCR). The demineralizing activity of ZY354-treated biofilms was evaluated by transverse microradiography. The results showed that ZY354 exhibited low cytotoxicity in HOK, HGE, and RAW cells and exhibited potent antimicrobial activity against common oral streptococci. The EPS and the abundance of S. mutans were significantly reduced after ZY354 treatment, along with an increased dead/live microbial ratio in multispecies biofilms compared to the level with the nontreated control. The ZY354-treated multispecies biofilms exhibited reduced demineralizing activity at the biofilm/enamel interface. In conclusion, the small-molecule compound ZY354 exhibits low cytotoxicity and remarkable antimicrobial activity against oral streptococci, and it may have a great potential in anticaries clinical applications.


Assuntos
Biofilmes/efeitos dos fármacos , Cárie Dentária/microbiologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Estrutura Molecular , Streptococcus/efeitos dos fármacos , Streptococcus gordonii/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Streptococcus sanguis
10.
BMC Biol ; 16(1): 151, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30593266

RESUMO

BACKGROUND: Cultured human cells are pivotal models to study human gene functions, but introducing complete loss of function in diploid or aneuploid cells has been a challenge. The recently developed CRISPR/Cas9-mediated homology-independent knock-in approach permits targeted insertion of large DNA at high efficiency, providing a tool for insertional disruption of a selected gene. Pioneer studies have showed promising results, but the current methodology is still suboptimal and functional outcomes have not been well examined. Taking advantage of the promoterless fluorescence reporter systems established in our previous study, here, we further investigated potentials of this new insertional gene disruption approach and examined its functional outcomes. RESULTS: Exemplified by using hyperploid LO2 cells, we demonstrated that simultaneous knock-in of dual fluorescence reporters through CRISPR/Cas9-induced homology-independent DNA repair permitted one-step generation of cells carrying complete disruption of target genes at multiple alleles. Through knocking-in at coding exons, we generated stable single-cell clones carrying complete disruption of ULK1 gene at all four alleles, lacking intact FAT10 in all three alleles, or devoid of intact CtIP at both alleles. We have confirmed the depletion of ULK1 and FAT10 transcripts as well as corresponding proteins in the obtained cell clones. Moreover, consistent with previous reports, we observed impaired mitophagy in ULK1-/- cells and attenuated cytokine-induced cell death in FAT10-/- clones. However, our analysis showed that single-cell clones carrying complete disruption of CtIP gene at both alleles preserved in-frame aberrant CtIP transcripts and produced proteins. Strikingly, the CtIP-disrupted clones raised through another two distinct targeting strategies also produced varied but in-frame aberrant CtIP transcripts. Sequencing analysis suggested that diverse DNA processing and alternative RNA splicing were involved in generating these in-frame aberrant CtIP transcripts, and some infrequent events were biasedly enriched among the CtIP-disrupted cell clones. CONCLUSION: Multiallelic gene disruption could be readily introduced through CRISPR/Cas9-induced homology-independent knock-in of dual fluorescence reporters followed by direct tracing and cell isolation. Robust cellular mechanisms exist to spare essential genes from loss-of-function modifications, by generating partially functional transcripts through diverse DNA and RNA processing mechanisms.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Reparo do DNA , Técnicas de Introdução de Genes/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Ubiquitinas/genética , Linhagem Celular , Endodesoxirribonucleases , Mutagênese Insercional
11.
Toxicol Lett ; 294: 61-72, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758359

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are emerging tools for applications such as drug discovery and screening for pro-arrhythmogenicity and cardiotoxicity as leading causes for drug attrition. Understanding the electrophysiology (EP) of hPSC-CMs is essential but conventional manual patch-clamping is highly laborious and low-throughput. Here we adapted hPSC-CMs derived from two human embryonic stem cell (hESC) lines, HES2 and H7, for a 16-channel automated planar-recording approach for single-cell EP characterization. Automated current- and voltage-clamping, with an overall success rate of 55.0 ±â€¯11.3%, indicated that 90% of hPSC-CMs displayed ventricular-like action potential (AP) and the ventricular cardiomyocytes (VCMs) derived from the two hESC lines expressed similar levels of INa, ICaL, Ikr and If and similarly lacked Ito and IK1. These well-characterized hPSC-VCMs could also be readily adapted for automated assays of pro-arrhythmic drug screening. As an example, we showed that flecainide (FLE) induced INa blockade, leftward steady-state inactivation shift, slowed recovery from inactivation in our hPSC-VCMs. Since single-cell EP assay is insufficient to predict drug-induced reentrant arrhythmias, hPSC-VCMs were further reassembled into 2D human ventricular cardiac monolayers (hvCMLs) for multi-cellular electrophysiological assessments. Indeed, FLE significantly slowed the conduction velocity while causing AP prolongation. Our RNA-seq data suggested that cell-cell interaction enhanced the maturity of hPSC-VCMs. Taken collectively, a combinatorial approach using single-cell EP and hvCMLs is needed to comprehensively assess drug-induced arrhythmogenicity.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Flecainida/efeitos adversos , Ventrículos do Coração/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores do Canal de Sódio Disparado por Voltagem/efeitos adversos , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Automação Laboratorial , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Estudos de Viabilidade , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Reprodutibilidade dos Testes , Análise de Célula Única , Canais de Sódio Disparados por Voltagem/química
12.
J Cancer ; 8(17): 3585-3591, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151944

RESUMO

Introduction: Currently the majority of lung cancer patients are diagnosed as advanced diseases for no sensitive and specific biomarkers exist, noninvasive biomarkers with high sensitivity and specificity are urgently needed in lung cancer diagnosis. Bronchoscopy is a standard procedure of the diagnostic work-up of patients with suspected lung cancer despite of the limited diagnostic accuracy. Besides, epigenetic changes through DNA methylation play an important role in tumorigenesis. Thus, we examined the aberrant methylation of the SHOX2 and RASSF1A in bronchoalveolar lavage fluid (BALF) in comparing with conventional cytology examination and serum CEA in order to evaluate the new diagnostic method. Patients and Methods: BALF and serum samples were collected from 322 patients at the time of diagnosis, 284 of them were pathologically confirmed lung cancer, 35 were benign lung diseases and 3 were malignancies in other systems. For all of the 322 patients, the methylation status of the SHOX2 and RASSF1A gene were detected by a new RT-PCR platform and then confirmed by sanger sequencing. Serum CEA were detected using electrochemiluminescence immunoassay. Results: Profiling data showed the consistency of RT-PCR and sanger sequencing in detecting the methylation of the SHOX2 and RASSF1A. Besides, the combination of SHOX2 and RASSF1A methylation in BALF yielded a diagnostic sensitivity of 81.0% and specificity of 97.4%. When compared with established cytology examination (sensitivity: 68.3%, specificity: 97.4%) and serum biomarker carcinoembryonic antigen (CEA) (sensitivity: 30.6%, specificity: 100.0%), the SHOX2 and RASSF1A methylation panel showed the highest diagnostic efficiency. Notably, the combination of cytology and the SHOX2 and RASSF1A methylation panel could significantly improve the diagnostic efficacy. Conclusion: The methylation analysis of the SHOX2 and RASSF1A panel in BALF with RT-PCR achieved a satisfactory sensitivity and specificity in lung cancer diagnosis, especially in an early stage. It could be used as a promising noninvasive biomarker for auxiliary diagnosis of lung cancer.

13.
Lung Cancer ; 114: 31-37, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29173762

RESUMO

OBJECTIVES: EGFR mutation is a key factor to predict EGFR-TKI efficacy. However, a significant number of advanced patients do not have sufficient tumor specimens for molecular testing. Also, there is a lack of quantitative assay to analyze the mutant abundance. This study aims to evaluate the detection efficiency and clinical feasibility of a new platform, namely ARMS-Plus, for the detection and quantification of EGFR mutations in plasma. MATERIALS AND METHODS: The detection limit of ARMS-Plus was assessed by detecting spiked mutant plasmids which were serially diluted with normal human genomic DNA. The cutoff values were defined by examining the mutant copy numbers presented in 134 healthy controls. Plasma samples from 65 lung cancer patients were collected to evaluate the clinical performance of ARMS-Plus. EGFR mutations were concurrently tested by droplet digital PCR (ddPCR) for the plasma samples and conventional amplification refractory mutation system-PCR (ARMS-PCR) for the matched tumor tissue specimens to serve as a standard for comparison. RESULTS: In this study, the analytical sensitivity of ARMS-Plus was 0.015%. The cutoff values of EGFR 19Del, L858R, T790M mutations were defined as 2, 5, and 3 copies/mL, respectively. With tumor specimens as the standard, the sensitivity, specificity, and concordance rate of ARMS-Plus and ddPCR were 60.7%, 94.6%, and 80.0%; and 50.0%, 97.3%, and 76.9%, respectively. For quantification, the plasma 19Del and L858R mutant abundance detected by ARMS-Plus and ddPCR were consistent (Spearman R=0.7956 and 0.7710, P<0.0001). CONCLUSION: ARMS-Plus is a reliable, convenient and cost-effective method for the detection and quantification of plasma EGFR mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/sangue , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA de Neoplasias/sangue , Progressão da Doença , Receptores ErbB/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase/métodos , Estudos Prospectivos , Inibidores de Proteínas Quinases/farmacologia
14.
Biomark Cancer ; 9: 1-9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469485

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. The HCC diagnosis is usually achieved by biomarkers, which can also help in prognosis prediction. Furthermore, it might represent certain therapeutic interventions through some combinations of biomarkers. Here, we review on our current understanding of HCC biomarkers.

15.
Artigo em Inglês | MEDLINE | ID: mdl-28469997

RESUMO

Escherichia coli-induced meningitis remains a life-threatening disease despite recent advances in the field of antibiotics-based therapeutics, necessitating continued research on its pathogenesis. The current study aims to elucidate the mechanism through which hemolysin-coregulated protein 1 (Hcp1) induces the apoptosis of human brain microvascular endothelial cells (HBMEC). Co-immunoprecipitation coupled with mass spectrometric (MS) characterization led to the identification of IQ motif containing GTPase activating protein 1 (IQGAP1) as a downstream target of Hcp1. IQGAP1 was found to be up-regulated by Hcp1 treatment and mediate the stimulation of HBMEC apoptosis. It was shown that Hcp1 could compete against Smurf1 for binding to IQGAP1, thereby rescuing the latter from ubiquitin-dependent degradation. Subsequent study suggested that IQGAP1 could stimulate the MAPK signaling pathway by promoting the phosphorylation of ERK1/2, an effect that was blocked by U0126, an MAPK inhibitor. Furthermore, U0126 also demonstrated therapeutic potential against E. coli meningitis in a mouse model. Taken together, our results suggested the feasibility of targeting the MAPK pathway as a putative therapeutic strategy against bacterial meningitis.


Assuntos
Proteínas de Escherichia coli/farmacologia , Escherichia coli/metabolismo , Meningite devida a Escherichia coli/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fatores de Virulência/farmacologia , Proteínas Ativadoras de ras GTPase/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Encéfalo , Butadienos/antagonistas & inibidores , Linhagem Celular , Citocinas/análise , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Humanos , Meningite devida a Escherichia coli/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/antagonistas & inibidores , Fosforilação , RNA Interferente Pequeno , Transdução de Sinais , Ubiquitina-Proteína Ligases , Regulação para Cima
16.
Adv Mater ; 29(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27805726

RESUMO

A novel cardiomimetic biohybrid material, termed as the human ventricular cardiac anisotropic sheet (hvCAS) is reported. Well-characterized human pluripotent stem-cell-derived ventricular cardiomyocytes are strategically aligned to reproduce key electrophysiological features of native human ventricle, which, along with specific selection criteria, allows for a direct visualization of arrhythmic spiral re-entry and represents a revolutionary tool to assess preclinical drug-induced arrhythmogenicity.


Assuntos
Células-Tronco Pluripotentes , Diferenciação Celular , Ventrículos do Coração , Humanos , Miócitos Cardíacos
17.
Int J Oral Sci ; 8(3): 133-7, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27585820

RESUMO

Saliva is secreted from the salivary glands and has multiple functions, including mouth cleaning and protection, antibacterial effects and digestion. With the rapid advancement in salivaomics, saliva is well recognized as a pool of biological markers. Saliva, as a non-invasive and safe source, could be a substitute for blood in the diagnosis and prognosis of diseases. This review summarizes the latest advancements in saliva-related studies and addresses the potential value of saliva in the early diagnosis of oral diseases, such as dental caries and periodontal disease, as well as cancer, diabetes and other systemic disorders. Saliva biomarkers range from changes in the biochemical indices of DNA, RNA and proteins to the diversification of microbiota structures. This study integrates data reported in the recent literature and discusses the clinical significance and prospects for the application of saliva in the early diagnosis of diseases, translational medicine and precision medicine.


Assuntos
Doenças da Boca/diagnóstico , Saliva/química , Biomarcadores , Cárie Dentária , Humanos
18.
Toxicol Appl Pharmacol ; 305: 143-152, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27282297

RESUMO

Chronic exposure to cadmium compounds (Cd(2+)) is one of the major public health problems facing humans in the 21st century. Cd(2+) in the human body accumulates primarily in the kidneys which leads to renal dysfunction and other adverse health effects. Efforts to find a safe and effective drug for removing Cd(2+) from the kidneys have largely failed. We developed and synthesized a new chemical, sodium (S)-2-(dithiocarboxylato((2S,3R,4R,5R)-2,3,4,5,6 pentahydroxyhexyl)amino)-4-(methylthio) butanoate (GMDTC). Here we report that GMDTC has a very low toxicity with an acute lethal dose (LD50) of more than 10,000mg/kg or 5000mg/kg body weight, respectively, via oral or intraperitoneal injection in mice and rats. In in vivo settings, up to 94% of Cd(2+) deposited in the kidneys of Cd(2+)-laden rabbits was removed and excreted via urine following a safe dose of GMDTC treatment for four weeks, and renal Cd(2+) level was reduced from 12.9µg/g to 1.3µg/g kidney weight. We observed similar results in the mouse and rat studies. Further, we demonstrated both in in vitro and in animal studies that the mechanism of transporting GMDTC and GMDTC-Cd complex into and out of renal tubular cells is likely assisted by two glucose transporters, sodium glucose cotransporter 2 (SGLT2) and glucose transporter 2 (GLUT2). Collectively, our study reports that GMDTC is safe and highly efficient in removing deposited Cd(2+) from kidneys assisted by renal glucose reabsorption system, suggesting that GMDTC may be the long-pursued agent used for preventive and therapeutic purposes for both acute and chronic Cd(2+) exposure.


Assuntos
Cádmio/metabolismo , Quelantes/farmacologia , Glucosamina/análogos & derivados , Rim/metabolismo , Metionina/análogos & derivados , Animais , Cádmio/sangue , Cádmio/urina , Linhagem Celular , Quelantes/toxicidade , Feminino , Glucosamina/farmacologia , Glucosamina/toxicidade , Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Humanos , Masculino , Metionina/farmacologia , Metionina/toxicidade , Coelhos , Ratos Sprague-Dawley , Transportador 2 de Glucose-Sódio/metabolismo , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica
19.
PLoS One ; 8(3): e59574, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555712

RESUMO

Previously, we identified the genetic variant -241 (-/G) (rs11453459) in the PP2A-Aα gene (PPP2R1A) promoter and demonstrated that this variant influences the DNA-binding affinity of nuclear factor-kappa B (NF-κB). In this study, we further confirmed that the transcriptional activity of PPP2R1A may be regulated by NF-κB through the functional genetic variant -241 (-/G). Moreover, we also demonstrated that the methylation status of CpG islands in the promoter of PPP2R1A influences the activity of this gene promoter. Few studies have examined the role of this -241 (-/G) variant in genetic or epigenetic regulation in hepatocellular carcinoma (HCC). To investigate whether this functional variant in the PPP2R1A promoter is associated with the risk of HCC and confirm the function of the -241 (-/G) variant in the HCC population, we conducted a case-control study involving 251 HCC cases and 252 cancer-free controls from a Han population in southern China. Compared with the -241 (--) homozygote, the heterozygous -241 (-G) genotype (adjusted OR  = 0.32, 95% confidence interval (CI)  = 0.17-0.58, P<0.001) and the -241 (-G)/(GG) genotypes (adjusted OR  = 0.38, 95% CI  = 0.22-0.67, P  = 0.001) were both significantly associated with a reduced risk of HCC. Stratification analysis indicated that the protective role of -241 (-G) was more pronounced in individuals who were ≤ 40 years of age, female and HBV-negative. Our data suggest that the transcriptional activity of PPP2R1A is regulated by NF-κB through the -241 (-/G) variant and by the methylation of the promoter region. Moreover, the functional -241 (-/G) variant in the PPP2R1A promoter contributes to the decreased risk of HCC. These findings contribute novel information regarding the gene transcription of PPP2R1A regulated by the polymorphism and methylation in the promoter region through genetic and epigenetic mechanisms in hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Neoplasias Hepáticas/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Proteína Fosfatase 2/genética , Adulto , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/enzimologia , Metilação de DNA/genética , Feminino , Humanos , Neoplasias Hepáticas/enzimologia , Masculino , NF-kappa B/metabolismo , Transcrição Gênica/genética
20.
Arch Toxicol ; 86(11): 1729-40, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22983789

RESUMO

The present study was aimed at determining the role of paraquat (PQ) in the activation of the NF-E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway and the possible neuroprotective effects of tert-butylhydroquinone (tBHQ) pretreatment on PQ-induced neurodegeneration in vivo and in vitro. 7 mg/kg PQ treatment of male C57BL/6 mice caused decreased spontaneous locomotor activity, decreased tyrosine hydroxylase (TH)-positive neurons, increased terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end-labeling (TUNEL)-positive cells in the substantia nigra, as well as increased protein levels of both nuclear Nrf2 and HO-1. In PQ-treated mice, pretreatment with 1 % tBHQ (w/w) significantly attenuated impairments in behavioral performance, decreased TH-positive neurons, and increased TUNEL-positive cells in the substantia nigra, as well as increased protein expression of both nuclear Nrf2 and HO-1. Pretreatment with 40 µM tBHQ protected PC12 cells against 100 and 300 µM PQ-mediated cytotoxicity. The dual-luciferase reporter gene also revealed that the transcriptional activation of HO-1 gene expression of the antioxidant responsive element via Nrf2 occurred as a consequence of 100 and 300 µM PQ exposure. Collectively, these results clearly indicated for the first time that the Nrf2/HO-1 pathway in the substantia nigra was activated by PQ, and pretreatment with tBHQ conferred neuroprotection against PQ-induced Parkinsonism presumably by increasing Nrf2 and HO-1 expression.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Hidroquinonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Paraquat/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Neurônios Dopaminérgicos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Atividade Motora/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Células PC12/efeitos dos fármacos , Ratos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...