Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 933: 172690, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670361

RESUMO

Nitrification is a serious water-quality issue in chloraminated engineered water systems (EWSs). Nitrification is often remediated by a chlorine burn (i.e., a free­chlorine conversion), a short-term switch from chloramination to chlorination in EWSs. Opportunistic pathogens (OPs) are the dominant infectious agents in EWSs. However, the responses of OPs to a chlorine burn are unknown. This study for the first time assessed how a chlorine burn affected OPs in a full-scale EWS. We determined the impact of a 1.5-month chlorine burn on four dominant OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in a representative full-scale chloraminated EWS in the United States. Legionella and Mycobacterium were the most abundant OPs. In the water main, the summed concentration of the four OPs during the chlorine burn [3.27 ± 1.58 log10(GCN·L-1); GCN: genome or gene copy number] was lower (p ≤ 0.001) than before the burn [4.83 ± 0.50 log10(GCN·L-1)]. After the burn, the summed concentration increased to 4.27 ± 0.68 log10(GCN·L-1), comparable to before the burn (p > 0.05), indicating a transient effect of the chlorine burn in the water main. At the residential sites, the summed concentrations of the four OPs were comparable (p > 0.05) at 5.50 ± 0.84, 5.27 ± 1.44, and 5.08 ± 0.71 log10(GCN·L-1) before, during, and after the chlorine burn, respectively. Therefore, the chlorine burn was less effective in suppressing OP (re)growth in the premise plumbing. The low effectiveness might be due to more significant water stagnation and disinfectant residual decay in the premise plumbing. Indeed, for the entire sampling period, the total chlorine residual concentration in the premise plumbing (1.8 mg Cl2·L-1) was lower than in the water main (2.4 mg Cl2·L-1). Consequently, for the entire sampling period, the summed concentration of the four OPs in the premise plumbing [5.26 ± 1.08 log10(GCN·L-1)] was significantly higher (p < 0.001) than in the water main [4.04 ± 1.25 log10(GCN·L-1)]. In addition, the chlorine burn substantially increased the levels of disinfection by-products (DBPs) in the water main. Altogether, a chlorine burn is transient or even ineffective in suppressing OP (re)growth but raises DBP concentrations in chloraminated EWSs. Therefore, the practice of chlorine burns to control nitrification should be optimized, reconsidered, or even replaced.


Assuntos
Cloraminas , Cloro , Microbiologia da Água , Purificação da Água , Purificação da Água/métodos , Desinfetantes , Halogenação , Qualidade da Água
2.
Environ Pollut ; 345: 123398, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272163

RESUMO

Titanium-incorporated diatoms are promising biomaterials to photodegrade micropollutants such as pharmaceuticals and personal care products (PPCPs). Hydraulic retention time (HRT) is a key parameter for diatom cultivation and the incorporation of titanium into diatom frustules. This study assessed how HRT governs the micro/nanostructures, titania (TiO2) content and distribution, and the photocatalytic activity of titanium-incorporated diatom frustules. We cultivated a diatom strain Stephanodiscus hantzschii using a feed solution containing titanium(IV) in membrane bioreactors (MBRs) at a solids retention time (SRT) of 10 d and staged HRTs from 24 to 12 and to 6 h. The decrease in HRT reduced the porosity of diatom frustules but increased their silicon and titania contents. When the HRT decreased from 24 to 12 and to 6 h, the specific surface areas of the diatom decreased from 37.65 ± 3.19 to 31.53 ± 3.71 and to 18.43 ± 2.69 m2·g-1 frustules, while the titanium (Ti) contents increased from 53 ± 14 to 71 ± 9 and to 85 ± 13 mg Ti·g-1 frustules. The increase in the influent flow rates of the MBRs with decreasing HRTs likely enhanced nutrient diffusion inside the diatom valve pores, facilitating the uptake and incorporation of silicon and titanium. The titanium-incorporated frustules were effective in removing two representative PPCPs, bisphenol A (BPA) and N,N-diethyl-meta-toluamide (DEET), from water. As photocatalytic activity depends on the amount of titanium, decreasing the HRT substantially increased the photocatalytic activity of the titanium-incorporated frustules. In batch tests under ultraviolet light, frustules from the diatom cultivated at HRTs of 24, 12, and 6 h had the pseudo-first-order removal (mainly through photodegradation) rate constants of BPA of 0.376, 0.456, and 0.683 h-1, respectively. Under the same experimental condition, the pseudo-first-order removal rate constants of DEET by the frustules cultivated at HRTs of 24, 12, and 6 h increased from 0.270 to 0.330 and to 0.480 h-1.


Assuntos
Diatomáceas , Nanoestruturas , Diatomáceas/metabolismo , Titânio/química , Silício/metabolismo , DEET/metabolismo , Nanoestruturas/química , Dióxido de Silício/química
3.
Water Res ; 235: 119679, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011576

RESUMO

Phytoplankton is the essential primary producer in fresh surface water ecosystems. However, excessive phytoplankton growth due to eutrophication significantly threatens ecologic, economic, and public health. Therefore, phytoplankton identification and quantification are essential to understanding the productivity and health of freshwater ecosystems as well as the impacts of phytoplankton overgrowth (such as Cyanobacterial blooms) on public health. Microscopy is the gold standard for phytoplankton assessment but is time-consuming, has low throughput, and requires rich experience in phytoplankton morphology. Quantitative polymerase chain reaction (qPCR) is accurate and straightforward with high throughput. In addition, qPCR does not require expertise in phytoplankton morphology. Therefore, qPCR can be a useful alternative for molecular identification and enumeration of phytoplankton. Nonetheless, a comprehensive study is missing which evaluates and compares the feasibility of using qPCR and microscopy to assess phytoplankton in fresh water. This study 1) compared the performance of qPCR and microscopy in identifying and quantifying phytoplankton and 2) evaluated qPCR as a molecular tool to assess phytoplankton and indicate eutrophication. We assessed phytoplankton using both qPCR and microscopy in twelve large freshwater rivers across the United States from early summer to late fall in 2017, 2018, and 2019. qPCR- and microscope-based phytoplankton abundance had a significant positive linear correlation (adjusted R2 = 0.836, p-value < 0.001). Phytoplankton abundance had limited temporal variation within each sampling season and over the three years studied. The sampling sites in the midcontinent rivers had higher phytoplankton abundance than those in the eastern and western rivers. For instance, the concentration (geometric mean) of Bacillariophyta, Cyanobacteria, Chlorophyta, and Dinoflagellates at the sampling sites in the midcontinent rivers was approximately three times that at the sampling sites in the western rivers and approximately 18 times that at the sampling sites in the eastern rivers. Welch's analysis of variance indicates that phytoplankton abundance at the sampling sites in the midcontinent rivers was significantly higher than that at the sampling sites in the eastern rivers (p-value = 0.013) but was comparable to that at the sampling sites in the western rivers (p-value = 0.095). The higher phytoplankton abundance at the sampling sites in the midcontinent rivers was presumably because these rivers were more eutrophic. Indeed, low phytoplankton abundance occurred in oligotrophic or low trophic sites, whereas eutrophic sites had greater phytoplankton abundance. This study demonstrates that qPCR-based phytoplankton abundance can be a useful numerical indicator of the trophic conditions and water quality in freshwater rivers.


Assuntos
Cianobactérias , Fitoplâncton , Estados Unidos , Ecossistema , Cianobactérias/genética , Rios , Água Doce/microbiologia , Eutrofização , Estações do Ano , China
4.
Bioresour Technol ; 373: 128744, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791978

RESUMO

Tetrasphaera-enhanced biological phosphorus removal (T-EBPR) was developed by augmenting conventional EBPR (C-EBPR) with Tetrasphaera to improve phosphorus removal from anaerobic digestate of swine wastewater. At influent total phosphorus (TP) concentrations of 45-55 mg/L, T-EBPR achieved effluent TP concentration of 4.17 ± 1.02 mg/L, 54 % lower than that in C-EBPR (8.98 ± 0.76 mg/L). The enhanced phosphorous removal was presumably due to the synergistic effect of Candidatus Accumulibacter and Tetrasphaera occupying different ecological niches. Bioaugmentation with Tetrasphaera promoted the polyphosphate accumulation metabolism depending more on the glycolysis pathway, as evidenced by an increase in intracellular storage compounds of glycogen and polyhydroxyalkanoates by 0.87 and 0.34 mmol C/L, respectively. The enhanced intracellular storage capacity was coincidentally linked to the increase in phosphorus release and uptake rates by 1.23 and 1.01 times, respectively. These results suggest bioaugmentation with Tetrasphaera could be an efficient way for improved phosphorus removal from high-strength wastewater.


Assuntos
Actinomycetales , Águas Residuárias , Animais , Suínos , Fósforo/metabolismo , Anaerobiose , Polifosfatos/metabolismo , Reatores Biológicos , Actinomycetales/metabolismo , Esgotos
5.
Water Res ; 216: 118346, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358880

RESUMO

The hierarchical three-dimensional (3D) micro/nanostructures of diatoms make them a promising biomaterial for fabricating nanomaterials, producing bioactive pharmaceuticals or nutraceuticals, and removing micropollutants. For diatom production in a continuous flow system, little is known how bioreactor operating parameters, especially solids retention time (SRT), affect the 3D structures of diatoms. This study demonstrated that tunable diatom micro/nanostructures could be produced by varying the SRT of membrane bioreactors (MBRs). A diatom strain (Stephanodiscus hantzschii) was cultivated in two identical MBRs with a fixed hydraulic retention time (HRT) of 24 h and staged SRTs from 5, to 10, and to 20 d. As SRTs increased from 5 to 20 d, important characteristics of diatom micro/nanostructures showed linear decreases: the diameters of foramina on the areola layer decreased from 170 ± 10 to 130 ± 12 nm, the numbers of nanopores per cribrum layer decreased from 20 ± 3 to 12 ± 2, and the specific surface areas of the diatoms decreased from 36.01 ± 1.27 to 12.67 ± 2.45 m2·g-1. However, the average diatom heights increased from 2.9 ± 0.3 to 3.9 ± 0.4 µm, while diatom cell diameter (5 µm) and nanopore size (20 nm) remained unchanged. The silicon content of diatoms also linearly increased with SRT. The decrease in diatom porosity and increase in silicon content were probably due to the reduced diatom growth rates (likely resulting in less pores) at increasing SRTs, which also facilitated silica deposition as the overall diatom population stayed longer in the MBRs. As the SRTs increased from 5 to 10, and to 20 d, the nitrate (NO3-) removal efficiency decreased from 75% to 70%, and to 60%, respectively, whereas phosphorus (P) removal efficiency increased from 74% to 80%, and to 90%, respectively. The opposite trends in efficiencies were because NO3--N was removed by cellular uptake and biomass waste whereas P was mainly removed through diatom-assisted chemical precipitation.


Assuntos
Diatomáceas , Nanoestruturas , Reatores Biológicos , Nutrientes , Silício , Eliminação de Resíduos Líquidos/métodos
6.
Sci Total Environ ; 830: 154568, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35302035

RESUMO

Freshwater harmful cyanobacterial blooms (HCBs) potentially produce excessive cyanotoxins, mainly microcystins (MCs), significantly threatening aquatic ecosystems and public health. Accurately predicting HCBs is thus essential to developing effective HCB mitigation and prevention strategies. We previously developed a novel early-warning system that uses cyanotoxin-encoding genes to predict cyanotoxin production in Harsha Lake, Ohio, USA, in 2015. In this study, we evaluated the efficacy of the early-warning system in forecasting the 2016 HCB in the same lake. We also examined potential HCB drivers and cyanobacterial community composition. Our results revealed that the cyanobacterial community was stable at the phylum level but changed dynamically at the genus level over time. Microcystis and Planktothrix were the major MC-producing genera that thrived in June and July and produced high concentrations of MCs (peak level 10.22 µg·L-1). The abundances of the MC-encoding gene cluster mcy and its transcript levels significantly correlated with total MC concentrations (before the MC concentrations peaked) and accurately predicted MC production as revealed by logistic equations. When the Microcystis-specific gene mcyG reached approximately 1.5 × 103 copies·mL-1 or when its transcript level reached approximately 2.4 copies·mL-1, total MC level exceeded 0.3 µg L-1 (a health advisory limit) approximately one week later (weekly sampling scheme). This study suggested that cyanotoxin-encoding genes are promising predictors of MC production in inland freshwater lakes, such as Harsha Lake. The evaluated early-warning system can be a useful tool to assist lake managers in predicting, mitigating, and/or preventing HCBs.


Assuntos
Cianobactérias , Microcystis , Cianobactérias/genética , Toxinas de Cianobactérias , Ecossistema , Hexaclorobenzeno , Lagos/microbiologia , Microcistinas/genética , Microcystis/genética
7.
Toxins (Basel) ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36668822

RESUMO

Mitigating cyanotoxin production is essential to protecting aquatic ecosystems and public health. However, current harmful cyanobacterial bloom (HCB) control strategies have significant shortcomings. Because predicting HCBs is difficult, current HCB control strategies are employed when heavy HCBs have already occurred. Our pilot study developed an effective HCB prediction approach that is employed before exponential cyanobacterial growth and massive cyanotoxin production can occur. We used a quantitative polymerase chain reaction (qPCR) assay targeting the toxin-encoding gene mcyA to signal the timing of treatment. When control measures were applied at an early growth stage or one week before the exponential growth of Microcystis aeruginosa (predicted by qPCR signals), both hydrogen peroxide (H2O2) and the adsorbent hydroxyapatite (HAP) effectively stopped M. aeruginosa growth and microcystin (MC) production. Treatment with either H2O2 (10 mg·L-1) or HAP (40 µm particles at 2.5 g·L-1) significantly reduced both mcyA gene copies and MC levels compared with the control in a dose-dependent manner. While both treatments reduced MC levels similarly, HAP showed a greater ability to reduce mcyA gene abundance. Under laboratory culture conditions, H2O2 and HAP also prevented MC production when applied at the early stages of the bloom when mcyA gene abundance was below 105 copies·mL-1.


Assuntos
Microcystis , Microcystis/genética , Peróxido de Hidrogênio , Microcistinas/genética , Ecossistema , Projetos Piloto , Hidroxiapatitas
8.
Water Res ; 205: 117571, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34628111

RESUMO

Water-based opportunistic pathogens (OPs) are a leading cause of drinking-water-related disease outbreaks, especially in developed countries such as the United States (US). Physicochemical water quality parameters, especially disinfectant residuals, control the (re)growth, presence, colonization, and concentrations of OPs in drinking water distribution systems (DWDSs), while the relationship between OPs and those parameters remain unclear. This study aimed to quantify how physicochemical parameters, mainly monochloramine residual concentration, hydraulic residence time (HRT), and seasonality, affected the occurrence and concentrations of four common OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in four full-scale DWDSs in the US. Legionella as a dominant OP occurred in 93.8% of the 64 sampling events and had a mean density of 4.27 × 105 genome copies per liter. Legionella positively correlated with Mycobacterium, Pseudomonas, and total bacteria. Multiple regression with data from the four DWDSs showed that Legionella had significant correlations with total chlorine residual level, free ammonia concentration, and trihalomethane concentration. Therefore, Legionella is a promising indicator of water-based OPs, reflecting microbial water quality in chloraminated DWDSs. The OP concentrations had strong seasonal variations and peaked in winter and/or spring possibly because of reduced water usage (i.e., increased water stagnation or HRT) during cold seasons. The OP concentrations generally increased with HRT presumably because of disinfectant residual decay, indicating the importance of well-maintaining disinfectant residuals in DWDSs for OP control. The concentrations of Mycobacterium, Pseudomonas, and V. vermiformis were significantly associated with total chlorine residual concentration, free ammonia concentration, and pH and trihalomethane concentration, respectively. Overall, this study demonstrates how the significant spatiotemporal variations of OP concentrations in chloraminated DWDSs correlated with critical physicochemical water quality parameters such as disinfectant residual levels. This work also indicates that Legionella is a promising indicator of OPs and microbial water quality in chloraminated DWDSs.


Assuntos
Água Potável , Legionella , Mycobacterium , Cloro , Água Potável/análise , Microbiologia da Água
9.
Front Microbiol ; 12: 625324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967975

RESUMO

Microbial drinking water quality in premise plumbing systems (PPSs) strongly affects public health. Bacterial community structure is the essential aspect of microbial water quality. Studies have elucidated the microbial community structure in cold tap water, while the microbial community structures in hot tap and shower water are poorly understood. We sampled cold tap, hot tap, and shower water from a simulated PPS monthly for 16 consecutive months and assessed the bacterial community structures in those samples via high-throughput sequencing of bacterial 16S rRNA genes. The total relative abundance of the top five most abundant phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes) was greater than 90% among the 24 identified phyla. The most abundant families were Burkholderiaceae, Sphingomonadaceae, unclassified Alphaproteobacteria, unclassified Corynebacteriales, and Mycobacteriaceae. A multiple linear regression suggests that the bacterial community diversity increased with water temperature and the age of the simulated PPS, decreased with total chlorine residual concentration, and had a limited seasonal variation. The bacterial community in hot tap water had significantly lower Shannon and Inverse Simpson diversity indices (p < 0.05) and thus a much lower diversity than those in cold tap and shower water. The paradoxical results (i.e., diversity increased with water temperature, but hot tap water bacterial community was less diverse) were presumably because (1) other environmental factors made hot tap water bacterial community less diverse, (2) the diversity of bacterial communities in all types of water samples increased with water temperature, and (3) the first draw samples of hot tap water could have a comparable or even lower temperature than shower water samples and the second draw samples of cold tap water. In both a three-dimensional Non-metric multidimensional scaling ordination plot and a phylogenetic dendrogram, the samples of cold tap and shower water cluster and are separate from hot tap water samples (p < 0.05). In summary, the bacterial community in hot tap water in the simulated PPS had a distinct structure from and a much lower diversity than those in cold tap and shower water.

10.
Sci Total Environ ; 770: 145356, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33736415

RESUMO

This Discussion argues that municipal water utilities may need to consider the health risks of both opportunistic pathogens (OPs) and disinfection by-products (DBPs) while selecting disinfectant residual dosages or levels in engineered water systems. OPs are natural inhabitants in municipal water systems and the leading cause of drinking-water-related disease outbreaks threatening public health. DBPs in water systems are genotoxic/carcinogenic and also significantly affect public health. Disinfectant residuals (such as free chlorine and chloramine residuals) dictate OP (re)growth and DBP formation in engineered water systems. Therefore, regulating the dosages or levels of disinfectant residuals is effective in controlling OP (re)growth and DBP formation. Existing effects assessing optimal disinfectant residual dosages focus solely on minimizing OP (re)growth or solely on DBP formation. However, selecting disinfectant residual dosages aiming to solely limit the formation of DBPs might compromise OP (re)growth control, and vice versa. An optimal disinfectant residual level for DBP formation control or OP (re)growth control might not be optimal for minimizing the overall or combined health effects of OPs and DBPs in drinking water. To better protect public health, water authorities may need to update the current residual disinfection practice and maintain disinfectant residuals in engineered water systems at an optimal level to minimize the overall health risks of OPs and DBPs.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfetantes/análise , Desinfecção , Água Potável/análise , Poluentes Químicos da Água/análise
11.
Water Environ Res ; 93(7): 1126-1137, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33523520

RESUMO

Hydrothermal treatment (HT) is a promising technology to enhance anaerobic digestion (AD) of municipal sludge. However, the capacity of pre- and inter-stage HT (i.e., HT-AD and AD-HT-AD, respectively) to enhance the digestibility of municipal sludge has not been sufficiently explored. This study compared the efficacy of pre- and inter-stage HT performed from 90 to 185°C to enhance methane production from a mixture of primary sludge and waste activated sludge using mesophilic (35°C) biochemical methane potential tests. In both configurations, sludge solubilization increased with HT temperature. HT-AD, and to a greater extent AD-HT-AD, increased the release of ammonium nitrogen. Even though HT at 185°C dramatically increased sludge solubilization, the overall specific methane yield with HT at 185°C was lower than or comparable to that at lower HT temperatures in the HT-AD and AD-HT-AD configurations, respectively. Up to 155°C HT, the overall specific methane yield with the HT-AD configuration was higher by 4.9%-8.3% compared to the AD-HT-AD configuration. However, when the HT energy was considered, compared to the control (i.e., AD of sludge without HT), the net energy gain (ΔE) decreased as the HT temperature increased, becoming negative at an HT of 185°C. The AD-HT-AD configuration resulted in a higher overall volatile solids destruction (by 8.1 to 20.1%). In conclusion, for municipal sludge with a relatively high ultimate digestibility, as was the case in this study, HT-AD is preferable as it has a smaller footprint and is easier to operate than the AD-HT-AD configuration. However, given the significantly higher volatile solids destruction in the AD-HT-AD configuration, compared to the HT-AD configuration, AD-HT-AD may be more beneficial considering post-AD sludge handling processes. PRACTITIONER POINTS: Hydrothermal treatment (HT) increased the rate and extent of methane production from municipal sludge mixture. 155°C was the optimal temperature for either pre- or inter-stage HT to increase biogas production. Pre- and inter-stage HT resulted in comparable ultimate methane production. Pre-stage HT is preferable to inter-stage HT (smaller footprint, easier to operate). AD-HT-AD resulted in significantly higher volatile solids destruction compared to the HT-AD configuration.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Biocombustíveis/análise , Metano
12.
Environ Sci Technol ; 55(3): 1615-1625, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33461291

RESUMO

Anaerobic digestion (AD) combined with hydrothermal treatment (HT) is an attractive technology for sewage sludge treatment and resource recovery. The fate and distribution of heavy metals in the sludge during combined HT/AD significantly affect the sludge final disposal/utilization options, yet such information is still lacking. This study systematically characterizes the transformation of important heavy metals Cu, Zn, and Cr in sewage sludge during AD with pre- or interstage HT (i.e., HT-AD or AD-HT-AD, respectively). Complementary sequential chemical extraction and X-ray absorption spectroscopy were used to characterize the speciation and mobility of metals. For the HT-AD system, both Cu and Zn predominantly occur as sulfides in HT hydrochars. Subsequent AD favors the formation of Cu2S and partial transformation of nano-ZnS to adsorbed and organo-complexed Zn species. HT favors the formation of Cr-bearing silicates in hydrochars, whereas Fe(III)-Cr(III)-hydroxide and Cr(III)-humic complex are the predominant Cr species in AD solids. Similar reaction pathways occur in the AD-HT-AD system with some minor differences in metal species and contents, as the first-stage AD changed the sludge matrix. These findings have important implications for understanding the fate and mobility of heavy metals in sludge-derived hydrochars and AD solids.


Assuntos
Metais Pesados , Esgotos , Anaerobiose , Compostos Férricos , Zinco
13.
Water Res ; 189: 116628, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220609

RESUMO

Natural organic matter (NOM), such as humic acids, fulvic acids, and tannic acids, is ubiquitous in water bodies and hinders the photodegradation of pharmaceuticals and personal care products (PPCPs). We prepared titanium incorporated hierarchical diatoms as a novel photocatalyst to selectively remove PPCPs (triclosan, bisphenol A or BPA, and N, N-Diethyl-meta-toluamide or DEET) in the presence of NOM (humic acid). Diatom (Stephanodiscus hantzschii) grown in a titanium(IV) bis(ammonium lactato) dihydroxide solution integrated 7.2% ± 1.4% (mass fraction) of titanium in their cell wall and formed silica-titania frustules. The photodegradation of triclosan, BPA, and DEET by both silica-titania frustules and titania nanopowder (a control photocatalyst) follows pseudo-first-order kinetics. Under ultraviolent light irradiation, the titanium-content-normalized pseudo-first-order removal rate constants of triclosan, BPA, and DEET by silica-titania frustules were 3, 4, and 4-times those by titania nanopowder, respectively, at a humic acid concentration of 10 mg•L-1. Incorporation of titanium did not alter the morphology and hierarchical nano/microstructures of the diatom. The silica-titania frustules were rich in nanopores with a diameter of 20 ± 4 nm (mean ± standard deviation), allowing PPCPs with a small molecular weight (typically < 600 g•mol-1) to pass through while efficiently rejecting NOM with high molecular weights. The silica-titania frustules with hierarchical nano/microstructures served as a prefiltration unit by selectively allowing PPCPs to pass through the nanopores and are therefore promising for photodegradation and environmental remediation applications.


Assuntos
Cosméticos , Diatomáceas , Preparações Farmacêuticas , Poluentes Químicos da Água , Cosméticos/análise , Titânio , Água , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 753: 141922, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32896732

RESUMO

Algal productivity in steady-state cultivation systems depends on important factors such as biomass concentration, solids retention time (SRT), and light intensity. Current modeling of algal growth often ignores light distribution in algal cultivation systems and does not consider all these factors simultaneously. We developed a new algal growth model using a first principles approach to incorporate the effect of light intensity on algal growth while simultaneously considering biomass concentration and SRT. We first measured light attenuation (decay) with depth in an indoor algal membrane bioreactor (A-MBR) cultivating Chlorella sp. We then simulated the light decay using a multi-layer approach and correlated the decay with biomass concentration and SRT in model development. The model was calibrated by delineating specific light absorptivity and half-saturation constant to match the algal biomass concentration in the A-MBR operated at a target SRT. We finally applied the model to predict the maximum algal productivity in both indoor and outdoor A-MBRs. The predicted maximum algal productivities in indoor and outdoor A-MBRs were 6.7 g·m-2·d-1 (incident light intensity 5732 lx, SRT approximately 8 d) and 28 g·m-2·d-1 (sunlight intensity 28,660 lx, SRT approximately 4 d), respectively. The model can be extended to include other factors (e.g., water temperature and carbon dioxide bubbling) and such a modeling framework can be applied to full-scale, continuous flow outdoor systems to improve algal productivity.


Assuntos
Chlorella , Biomassa , Reatores Biológicos , Dióxido de Carbono , Temperatura
15.
Front Environ Sci ; 9: 1-22, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35004706

RESUMO

Opportunistic pathogens (OPs) are natural inhabitants and the predominant disease causative biotic agents in municipal engineered water systems (EWSs). In EWSs, OPs occur at high frequencies and concentrations, cause drinking-water-related disease outbreaks, and are a major factor threatening public health. Therefore, the prevalence of OPs in EWSs represents microbial drinking water quality. Closely or routinely monitoring the dynamics of OPs in municipal EWSs is thus critical to ensuring drinking water quality and protecting public health. Monitoring the dynamics of conventional (fecal) indicators (e.g., total coliforms, fecal coliforms, and Escherichia coli) is the customary or even exclusive means of assessing microbial drinking water quality. However, those indicators infer only fecal contamination due to treatment (e.g., disinfection within water utilities) failure and EWS infrastructure issues (e.g., water main breaks and infiltration), whereas OPs are not contaminants in drinking water. In addition, those indicators appear in EWSs at low concentrations (often absent in well-maintained EWSs) and are uncorrelated with OPs. For instance, conventional indicators decay, while OPs regrow with increasing hydraulic residence time. As a result, conventional indicators are poor indicators of OPs (the major aspect of microbial drinking water quality) in EWSs. An additional or supplementary indicator that can well infer the prevalence of OPs in EWSs is highly needed. This systematic review argues that Legionella as a dominant OP-containing genus and natural inhabitant in EWSs is a promising candidate for such a supplementary indicator. Through comprehensively comparing the behavior (i.e., occurrence, growth and regrowth, spatiotemporal variations in concentrations, resistance to disinfectant residuals, and responses to physicochemical water quality parameters) of major OPs (e.g., Legionella especially L. pneumophila, Mycobacterium, and Pseudomonas especially P. aeruginosa), this review proves that Legionella is a promising supplementary indicator for the prevalence of OPs in EWSs while other OPs lack this indication feature. Legionella as a dominant natural inhabitant in EWSs occurs frequently, has a high concentration, and correlates with more microbial and physicochemical water quality parameters than other common OPs. Legionella and OPs in EWSs share multiple key features such as high disinfectant resistance, biofilm formation, proliferation within amoebae, and significant spatiotemporal variations in concentrations. Therefore, the presence and concentration of Legionella well indicate the presence and concentrations of OPs (especially L. pneumophila) and microbial drinking water quality in EWSs. In addition, Legionella concentration indicates the efficacies of disinfectant residuals in EWSs. Furthermore, with the development of modern Legionella quantification methods (especially quantitative polymerase chain reactions), monitoring Legionella in ESWs is becoming easier, more affordable, and less labor-intensive. Those features make Legionella a proper supplementary indicator for microbial drinking water quality (especially the prevalence of OPs) in EWSs. Water authorities may use Legionella and conventional indicators in combination to more comprehensively assess microbial drinking water quality in municipal EWSs. Future work should further explore the indication role of Legionella in EWSs and propose drinking water Legionella concentration limits that indicate serious public health effects and require enhanced treatment (e.g., booster disinfection).

16.
Environ Sci Technol ; 54(13): 8362-8372, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32539353

RESUMO

Anaerobic digestion (AD) with hydrothermal (HT) pretreatment is an emerging technology for enhanced resource recovery from sewage sludge. This study investigates the speciation of Fe, P, and S during sequential HT-AD treatment of sewage sludge using sequential chemical extraction, X-ray diffraction, and X-ray absorption spectroscopy. Results suggest strong correlations between Fe and P species as well as Fe and S species, affecting the solubility and bioavailability of each other. For instance, much vivianite formed in the hydrochars after HT treatment at low temperature, while more strengite precipitated at higher HT temperature. During the subsequent AD process, microbial reduction of strengite and other Fe(III) species led to the formation of more vivianite, with concurrent P release into the solution and adsorption onto other minerals. HT pretreatment of sewage sludge had a weak effect on the sulfidation of Fe during the AD process. This work has important implications for understanding the nutrient speciation and availability in sludge-derived hydrochars and AD solids. It also provides fundamental knowledge for the selection and optimization of HT pretreatment conditions for enhanced resource recovery through sequential HT-AD process.


Assuntos
Fósforo , Esgotos , Anaerobiose , Ferro , Enxofre , Eliminação de Resíduos Líquidos
17.
Water Environ Res ; 92(5): 689-697, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31642156

RESUMO

This study aimed to concentrate and recover resources from municipal wastewater with a novel forward osmosis (FO) system. The FO system used synthetic seawater as the draw solution (DS) to extract water from the feed solution (FS) (synthetic raw municipal wastewater). Because ammonium passed through the FO membrane from the FS to the DS, we cultivated an algal strain (Chlorella vulgaris) in the DS to remove and recover ammonium. For three consecutive FO cycles, the algal FO system removed 35.4% of the ammonium from the DS, increased the concentrations of COD and PO 4 3 - - P in the FS by 43.0%, and achieved a water flux of 11.59 ± 0.49 L m-2  hr-1 . Throughout the FO cycles, the algal biomass concentration of the DS stayed at 606 ± 29 mg COD/L due to simultaneous algal growth and DS dilution. This FO process may be feasible to implement for full-scale applications to concentrate wastewater and recover resources. PRACTITIONER POINTS: A novel forward osmosis (FO) system with an algal draw solution (DS) concentrated municipal wastewater and recovered resources (ammonium). Ammonium but not organic matter or phosphate diffused across the FO membrane from the feed solution (FS) to the DS. The algal FO system increased COD/phosphate concentration in the FS by 43.0% and removed 35.4% of ammonium from the DS. The water fluxes in the algal FO system and the control were 11.59 and 12.02 L m-2  hr-1 , respectively. The novel algal FO process has the potential to improve full-scale efficiency by concentrating municipal wastewater and recovering nutrients.


Assuntos
Chlorella vulgaris , Purificação da Água , Membranas Artificiais , Osmose , Águas Residuárias
18.
Environ Sci Pollut Res Int ; 26(31): 31945-31955, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31493075

RESUMO

Bioelectrochemical systems (BESs) including microbial electrolysis cells (MECs) and microbial fuel cells (MFCs) are promising for hexavalent chromium [Cr(VI)] reduction and total chromium (Cr) removal from wastewater. This study assessed the performance of simple, inexpensive, and continuous flow BESs with neither cathode catalyst nor proton exchange membrane for Cr(VI) reduction and total Cr removal. The effect of bioreactor configuration and wastewater feed mode on the performance of the BESs was investigated. Biological Cr(VI) reduction in the MEC followed a first-order kinetics with a rate constant of 0.103 d-1, significantly higher than that of the control (0.033 d-1). For comparison, the first-order reduction rate constants in the MFCs with the Cr(VI) fed to the anodic and the cathodic zones were 0.072 and 0.064 d-1, respectively. The BESs improved total Cr removal through coprecipitating Cr(III) and phosphors as evidenced from the scanning electron microscopy energy-dispersive X-ray spectroscopy analysis. The total Cr removal efficiencies in the control, MFCs, and MEC were 26.1%, 56.7%, and 66.2%, respectively. Only 25.1% to 26.7% of total Cr was present intracellularly in the BESs (both MFCs and MEC), whereas 31.8% ± 1.4% and 38.0% ± 0.9% of total Cr in the anodic and cathodic zones of the control were present intracellularly. Overall, the BESs demonstrated a great potential to reduce Cr(VI) and remove total Cr with the MEC having the fastest Cr(VI) reduction and most efficient total Cr removal. Furthermore, the BESs significantly reduced the intracellular total Cr content.


Assuntos
Cromo/química , Águas Residuárias/química , Fontes de Energia Bioelétrica , Reatores Biológicos , Eletrodos , Eletrólise , Cinética , Oxirredução
19.
Sci Total Environ ; 685: 419-427, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31176227

RESUMO

Peracetic acid (PAA) is an emerging disinfectant with a low disinfection by-product formation potential, but how PAA destroys gene function after killing bacteria remains to be studied. Bacterial plasmid DNA is a mobile genetic element that often harbors undesirable genes encoding antibiotic resistance and virulence factors. Even though PAA efficiently kills bacteria, bacterial plasmids and other mobile genetic elements might still be intact and functional after PAA disinfection, posing potential public health and environmental risks. This study evaluated the impact of PAA disinfection on the functionality of plasmid DNA in vivo and compared the results with those from chlorination. We delivered a plasmid DNA harboring two antibiotic resistance genes to Escherichia coli TOP10 to form an antibiotic-resistant bacterium (ARB). The planktonic ARB was treated with PAA and chlorine to find the minimum doses inhibiting the regrowth of the strain. PAA and chlorine stopped the regrowth at 8 ±â€¯1 mg PAA·L-1 and 20 ±â€¯9 mg Cl2·L-1, respectively. The functionality of the plasmid DNA after PAA and chlorine disinfection was then determined at higher doses in vivo. Neither PAA nor chlorine completely destroyed the plasmid DNA. However, chlorine was more efficient than PAA in eliminating the plasmid DNA. PAA at 25 mg PAA·L-1 reduced the transforming activity of the plasmid DNA by less than 0.3 log10 units, whereas chlorine at 25 mg Cl2·L-1 reduced the transforming activity by approximately 1.7 log10 units. Chlorine had a more pronounced impact on the functionality of the plasmid DNA because it oxidizes or destroys bacterial components including plasmid DNA faster than PAA. In addition, environmental scanning electron microscopy shows that chlorination desiccated the cells resulting in the flat cellular structure and possibly more complete loss of plasmid DNA, whereas PAA disinfection had a less impact on cell structure and morphology. This study demonstrates that more plasmid DNA remains functional in water after PAA disinfection than after chlorination. These functional genetic elements could be acquired by other microorganisms via horizontal gene transfer to pose potential public health and environmental risks.


Assuntos
Desinfetantes/análise , Desinfecção/métodos , Ácido Peracético/análise , Purificação da Água/métodos , DNA Bacteriano , Halogenação , Plasmídeos/genética
20.
J Gerontol A Biol Sci Med Sci ; 74(2): 163-167, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29506144

RESUMO

We investigated the toxic effect of visible light on Drosophila life span in both sexes. The toxic effect of ultraviolet light on organisms is well known. However, the effects of illumination with visible light remain unclear. Here, we found that visible light could be toxic to Drosophila survival, depending on the protein content in diet. In addition, further analysis revealed significant interaction between light and sex and showed that strong light shortened life span by causing opposite direction changes in mortality rate parameters in females versus males. Our findings suggest that photoaging may be a general phenomenon and support the theory of sexual antagonistic pleiotropy in aging intervention. The results caution that exposure to visible light could be hazardous to life span and suggest that identification of the underlying mechanism would allow better understanding of aging intervention.


Assuntos
Envelhecimento/efeitos da radiação , Proteínas Alimentares/farmacologia , Ingestão de Energia/fisiologia , Raios Ultravioleta/efeitos adversos , Envelhecimento/metabolismo , Animais , Drosophila melanogaster , Ingestão de Energia/efeitos da radiação , Feminino , Masculino , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...