Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Joint Res ; 13(5): 247-260, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771134

RESUMO

Aims: In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. Methods: An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel's mechanism in IVDD. Results: A correlation between DDIT4 expression levels and disc degeneration was shown with human nucleus pulposus and needle-punctured rat disc specimens. We confirmed that DDIT4 was responsible for activating the ROS-TXNIP-NLRP3 axis during oxidative stress-induced pyroptosis in rat nucleus pulposus in vitro. Mitochondria were damaged during oxidative stress, and DDIT4 contributed to mitochondrial damage and ROS production. In addition, siDDIT4@G5-P-HA hydrogels showed good delivery activity of siDDIT4 to NPCs. In vitro studies illustrated the potential of the siDDIT4@G5-P-HA hydrogel for alleviating IVDD in rats. Conclusion: DDIT4 is a key player in mediating pyroptosis and IVDD in NPCs through the ROS-TXNIP-NLRP3 axis. Additionally, siDDIT4@G5-P-HA hydrogel has been found to relieve IVDD in rats. Our research offers an innovative treatment option for IVDD.

2.
ACS Sens ; 9(5): 2310-2316, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38651676

RESUMO

The smart light-up probes have been extensively developed to image various enzymes and other bioactive molecules. Upon activation, these probes result in light-up fluorophores that exist in a protein-bound or a free form. The difference between these two forms has not yet been reported. Here, we present a pair of smart light-up probes that generate a protein-bound fluorophore and a free fluorophore upon activation by heme. Probe 8 generated a radical-attached fluorophore that predominantly existed in the free form, while probe 10 generated an α,ß-unsaturated ketone-attached fluorophore that showed extensive labeling of proteins. In live-cell imaging, probe 8 showed greater fluorescence intensity than probe 10 when low concentrations (0.1-5 µM) of the probes were used, but probe 8 was less fluorescent than probe 10 when the concentrations of the probes were high (10 µM). Finally, probe 8 was used to reflect the activation level of the endoperoxide bond in cancer cells and to effectively distinguish ART-sensitive cancer cells from ART-insensitive ones.


Assuntos
Artemisininas , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Artemisininas/química , Artemisininas/farmacologia , Linhagem Celular Tumoral , Imagem Óptica , Neoplasias/diagnóstico por imagem , Radicais Livres/química
3.
Angew Chem Int Ed Engl ; 63(12): e202316394, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38248139

RESUMO

Advances in targeted covalent inhibitors (TCIs) have been made by using lysine-reactive chemistries. Few aminophiles possessing balanced reactivity/stability for the development of cell-active TCIs are however available. We report herein lysine-reactive activity-based probes (ABPs; 2-14) based on the chemistry of aryl fluorosulfates (ArOSO2 F) capable of global reactivity profiling of the catalytic lysine in human kinome from mammalian cells. We concurrently developed reversible covalent ABPs (15/16) by installing salicylaldehydes (SA) onto a promiscuous kinase-binding scaffold. The stability and amine reactivity of these probes exhibited a broad range of tunability. X-ray crystallography and mass spectrometry (MS) confirmed the successful covalent engagement between ArOSO2 F on 9 and the catalytic lysine of SRC kinase. Chemoproteomic studies enabled the profiling of >300 endogenous kinases, thus providing a global landscape of ligandable catalytic lysines of the kinome. By further introducing these aminophiles into VX-680 (a noncovalent inhibitor of AURKA kinase), we generated novel lysine-reactive TCIs that exhibited excellent in vitro potency and reasonable cellular activities with prolonged residence time. Our work serves as a general guide for the development of lysine-reactive ArOSO2 F-based TCIs.


Assuntos
Lisina , Fosfotransferases , Animais , Humanos , Lisina/química , Ligação Proteica , Espectrometria de Massas , Catálise , Mamíferos/metabolismo
4.
J Mater Sci Mater Med ; 34(11): 57, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938467

RESUMO

Early fracture fixation is the critical factor in fracture healing. Common internal fracture implants are made of metallic materials, which often affects the imaging quality of CT and MRI. Most patients will choose secondary surgery to remove the internal fixation implants, which causes secondary damage to them. The development of new degradable internal fracture implants has attracted more and more attention from orthopedic surgeons and researchers. Based on these problems, we improved the various properties of medical grade polycaprolactone (PCL) by adding poly(L-lactide) (PLLA). We produced PCL/PLLA strapping bands with different mass ratios by injection molding. We compared the mechanical properties, degradation properties, cell biocompatibility, bone marrow mesenchymal stem cells (BMSCs) adhesion, proliferation, osteogenic differentiation and fracture fixation effect of these strapping bands. The results showed that the tensile strength and yield force of the strapping bands increased with the increase of the content of PLLA. The addition of PLLA could significantly improve the mechanical strength in the early stage and accelerate the degradation rate of the strapping band. PCL/PLLA (80/20) strapping band had no significant cytotoxicity toward rBMSCs and could promote osteogenic differentiation of rBMSCs. The strapping band could ensure femoral fracture healing of beagles in 3 months and didn't cause damage to the surrounding tissues and main organs. This study will provide some new insights into the biodegradable products of PCL/PLLA blends for internal fixation of fracture. We produced novel degradable PCL/PLLA strapping bands with different mass ratios by injection molding. We tested the biological safety of the prepared internal fixation strapping bands for fracture, such as cell experiment in vitro and animal experiment, and studied the degradation behavior in vitro. The strapping bands could ensure femoral fracture healing of beagles. This study will provide some new insights into the biodegradable products of PCL/PLLA blends for internal fixation of fracture. A Immunofluorescence staining of rBMSCs (live cells: green; dead cells: red). B Young's modulus change curve during strapping bands degradation. C The implantation process of strapping bands. D Micro-CT images of the beagle's fracture recovery after the operation.


Assuntos
Fraturas do Fêmur , Osteogênese , Animais , Cães , Humanos , Fixação Interna de Fraturas , Fraturas do Fêmur/cirurgia , Consolidação da Fratura , Materiais Biocompatíveis
5.
Bioorg Med Chem Lett ; 93: 129414, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494974

RESUMO

Artemisinin is an endoperoxide bond-containing sesquiterpene lactone showing potent antimalarial effect as well as antitumor and antivirus activities. Inspired by this unique pharmacorphore, researchers around the world developed numerous Artemisinin derivatives. Among these derivatives, the C-10 carba analogues of artemisinin are frequently reported. However, the stereochemistry of C-10 carba analogues of artemisinin is overlooked and the corresponding mixture of stereoisomers are used. Herein, we reported for the first time stereochemistry and antimalarial activity of C-10 carba analogues of artemisinin. We employed two approaches to obtain the pure isomer of C-10 carba analogues and presented an interesting observation about their antimalarial activities. The minor isomer with large-sized substitute and S configuration at C-10 position had much lower antimalarial effect than the major isomer with R configuration. The study will shed light on the development of effective antimalarial drugs based on ART.


Assuntos
Antimaláricos , Artemisininas , Antimaláricos/farmacologia , Artemisininas/farmacologia , Estereoisomerismo
6.
Chemistry ; 29(43): e202300682, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37265377

RESUMO

The human endocannabinoid system regulates a myriad of physiological processes through a complex lipid signaling network involving cannabinoids and their respective receptors, cannabinoid receptor 1 (hCB1 R) and cannabinoid receptor 2 (hCB2 R). Anandamide (AEA) and cannabidiol (CBD) are classical examples of cannabinoids that elicit a variety of effects, both beneficial and detrimental, through these receptors. Mounting evidence suggested the presence of other potential cannabinoid targets that may be responsible for other observable effects. However, prior pharmacological studies on these cannabinoid compounds provided scant evidence of direct engagement to these proposed targets. Moreover, to the best of our knowledge, no chemoproteomic studies have been demonstrated on CBD. Here we showed that, by taking advantage of a recently developed 'label-free' 2D-TPP (2 Dimensional-Thermal Protein Profiling) approach, we have identified several new putative targets of both AEA and CBD. Comparison of these interaction landscapes with those obtained from well-established affinity-based protein profiling (AfBPP) platforms has led to the discovery of both shared and unique protein targets. Subsequent target validation of selected proteins led us to conclude that this 2D-TPP strategy complements well with AfBPP.


Assuntos
Canabidiol , Canabinoides , Humanos , Endocanabinoides/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Canabinoides/metabolismo , Alcamidas Poli-Insaturadas , Proteínas de Transporte
7.
Redox Biol ; 63: 102711, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148740

RESUMO

Excess osteoclast activity is found in many bone metabolic diseases, and inhibiting osteoclast differentiation has proven to be an effective strategy. Here, we revealed that osteoclast precursors (pre-OCs) were more susceptible to thioredoxin reductase 1 (TXNRD1) inhibitors than bone marrow-derived monocytes (BMDMs) during receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclastogenesis. Mechanistically, we found that nuclear factor of activated T-cells 1 (NFATc1) upregulated solute carrier family 7 member 11 (SLC7A11) expression through transcriptional regulation during RANKL-induced osteoclastogenesis. During TXNRD1 inhibition, the rate of intracellular disulfide reduction is significantly reduced. Increased cystine transport leads to increased cystine accumulation, which leads to increased cellular disulfide stress and disulfidptosis. We further demonstrated that SLC7A11 inhibitors and treatments that prevent disulphide accumulation could rescue this type of cell death, but not the ferroptosis inhibitors (DFO, Ferro-1), the ROS scavengers (Trolox, Tempol), the apoptosis inhibitor (Z-VAD), the necroptosis inhibitor (Nec-1), or the autophagy inhibitor (CQ). An in vivo study indicated that TXNRD1 inhibitors increased bone cystine content, reduced the number of osteoclasts, and alleviated bone loss in an ovariectomized (OVX) mouse model. Together, our findings demonstrate that NFATc1-mediated upregulation of SLC7A11 induces targetable metabolic sensitivity to TXNRD1 inhibitors during osteoclast differentiation. Moreover, we innovatively suggest that TXNRD1 inhibitors, a classic drug for osteoclast-related diseases, selectively kill pre-OCs by inducing intracellular cystine accumulation and subsequent disulfidptosis.


Assuntos
Osteoclastos , Tiorredoxina Redutase 1 , Camundongos , Animais , Osteoclastos/metabolismo , Tiorredoxina Redutase 1/metabolismo , Cistina , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/farmacologia , Regulação da Expressão Gênica , Diferenciação Celular/genética
8.
Signal Transduct Target Ther ; 8(1): 101, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36894540

RESUMO

Tutin, an established toxic natural product that causes epilepsy in rodents, is often used as a tool to develop animal model of acute epileptic seizures. However, the molecular target and toxic mechanism of tutin were unclear. In this study, for the first time, we conducted experiments to clarify the targets in tutin-induced epilepsy using thermal proteome profiling. Our studies showed that calcineurin (CN) was a target of tutin, and that tutin activated CN, leading to seizures. Binding site studies further established that tutin bound within the active site of CN catalytic subunit. CN inhibitor and calcineurin A (CNA) knockdown experiments in vivo proved that tutin induced epilepsy by activating CN, and produced obvious nerve damage. Together, these findings revealed that tutin caused epileptic seizures by activating CN. Moreover, further mechanism studies found that N-methyl-D-aspartate (NMDA) receptors, gamma-aminobutyric acid (GABA) receptors and voltage- and Ca2+- activated K+ (BK) channels might be involved in related signaling pathways. Our study fully explains the convulsive mechanism of tutin, which provides new ideas for epilepsy treatment and drug development.


Assuntos
Calcineurina , Epilepsia , Animais , Camundongos , Calcineurina/genética , Calcineurina/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/genética , Picrotoxina , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato , Convulsões/induzido quimicamente , Convulsões/genética
9.
Chemistry ; 29(29): e202300531, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36920077

RESUMO

Drugs and bioactive natural products exert their pharmacological effects by engaging numerous cellular targets in our body. Identification of these protein targets is essential for understanding the mechanism-of-action of these compounds, thus contributing to improved drug design in drug discovery programs. Termed "in situ drug profiling", a common strategy for studying these bioactive compounds centralized on the covalent capture of protein targets along with a reporter tag to facilitate downstream proteomic analyses. Though highly successful, such reliance on innate electrophilic traps to facilitate covalent capture restricted its applications to covalent acting compounds. Late-stage C-H functionalization (LSF) may resolve this by substituting biologically inert C-H bonds with desired electrophilic groups. Herein, we demonstrated this concept by arming a diverse range of electron-rich aromatic drugs and natural products with α,ß-unsaturated esters, via late-stage C-H olefination with an arylthio-based carboxylic acid ligand developed by Ibanez and co-workers. We also showed that covalent probes generated from this LSF approach could be applied for "in situ drug profiling" of Δ8 -THC, as exemplified by the successful target engagement of α-4 db, a Δ8 -THC-based probe, to its native target hCB2 R. In combination with AfBP 7, a photoaffinity-based derivative of Δ8 -THC, we identified several novel putative targets that could account for some of the effects in THC consumption. We anticipate our C-H LSF strategy to be widely adopted for future studies of non-covalent drugs.


Assuntos
Produtos Biológicos , Proteoma , Humanos , Proteoma/metabolismo , Dronabinol , Proteômica , Descoberta de Drogas , Produtos Biológicos/química
10.
Acta Pharm Sin B ; 13(3): 1326-1336, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970201

RESUMO

Neuropathic pain is a chronic disease that severely afflicts the life and emotional status of patients, but currently available treatments are often ineffective. Novel therapeutic targets for the alleviation of neuropathic pain are urgently needed. Rhodojaponin VI, a grayanotoxin from Rhododendron molle, showed remarkable antinociceptive efficacy in models of neuropathic pain, but its biotargets and mechanisms are unknown. Given the reversible action of rhodojaponin VI and the narrow range over which its structure can be modified, we perforwmed thermal proteome profiling of the rat dorsal root ganglion to determine the protein target of rhodojaponin VI. N-Ethylmaleimide-sensitive fusion (NSF) was confirmed as the key target of rhodojaponin VI through biological and biophysical experiments. Functional validation showed for the first time that NSF facilitated trafficking of the Cav2.2 channel to induce an increase in Ca2+ current intensity, whereas rhodojaponin VI reversed the effects of NSF. In conclusion, rhodojaponin VI represents a unique class of analgesic natural products targeting Cav2.2 channels via NSF.

11.
Eur J Med Chem ; 248: 115094, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634454

RESUMO

Noncovalent inhibitors of p97 have entered clinical studies. Compared with noncovalent inhibitors, covalent inhibitors have unique advantages in maintaining inhibitory effect and improving the resistance of the target. We previously employed the activity-based protein profiling to definitely identify p97 as the protein target of FL-18 that has a unique scaffold of benpropargylamide coupled with an imidazole. In this study, we report a thorough structure-activity-relationship study involving the new scaffold. A total of three rounds of optimization led to the discovery of the most potent covalent inhibitor of p97 to date. A chemical proteomics study indicated that the newly-synthesized compounds still targeted the C522 residue of p97 and retained selectivity among the complicated whole proteome. This study provides a suite of new covalent inhibitors of p97 to assist in its biological study and drug discovery.


Assuntos
Inibidores Enzimáticos , Imidazóis , Adenosina Trifosfatases , Inibidores Enzimáticos/química , Imidazóis/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
12.
J Proteome Res ; 22(3): 802-811, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716354

RESUMO

Multitarget bioactive molecules (MBMs) are of increasing importance in drug discovery as they could produce high efficacy and a low chance of resistance. Several advanced approaches of quantitative proteomics were developed to accurately identify the protein targets of MBMs, but little study has been carried out in a sequential manner to identify primary protein targets (PPTs) of MBMs. This set of proteins will first interact with MBMs in the temporal order and play an important role in the mode of action of MBMs, especially when MBMs are at low concentrations. Herein, we describe a valuable observation that the result of the enrichment process is highly dependent on concentrations of the probe and the proteome. Interestingly, high concentrations of probe and low concentrations of incubated proteome will readily miss the hyper-reactive protein targets and thereby increase the probability of rendering PPTs with false-negative results, while low concentrations of probe and high concentrations of incubated proteome more than likely will capture the PPTs. Based on this enlightening observation, we developed a proof-of-concept approach to identify the PPTs of iodoacetamide, a thiol-reactive MBM. This study will deepen our understanding of the enrichment process and improve the accuracy of pull-down-guided target identification.


Assuntos
Proteoma , Proteoma/metabolismo , Descoberta de Drogas
13.
Front Endocrinol (Lausanne) ; 13: 885507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663327

RESUMO

Postmenopausal osteoporosis (PMOP) is a kind of primary osteoporosis that is characterized by decreased bone density and strength. Berbamine is a nonbasic quaternary benzylisoquinoline plant alkaloid that has been widely used in the clinic to treat leukopenia in China. We found that berbamine inhibited RANKL-induced osteoclastogenesis of bone marrow-derived macrophages (BMMs) in vitro, which mainly occurred in the middle phase and late phase. The gene and protein expression levels of osteoclast-related molecules, including CTSK, MMP-9, NFATc1, CD44 and DC-STAMP, were also downregulated by berbamine. In vivo, we treated PMOP mice with berbamine for 8 weeks and found that the extent of osteoporosis was alleviated significantly according to micro-CT scanning, hematoxylin-eosin staining, DC-STAMP immunohistochemical staining and TRAP immunohistochemical staining in the distal femurs of the mice. Our findings demonstrate that berbamine has an inhibitory effect on the osteoclastogenesis of BMMs and can prevent bone loss after ovariectomy in vivo. This study provides evidence that berbamine is a potential drug for the prevention and treatment of PMOP.


Assuntos
Alcaloides , Benzilisoquinolinas , Reabsorção Óssea , Osteoporose Pós-Menopausa , Osteoporose , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Feminino , Humanos , Camundongos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose Pós-Menopausa/tratamento farmacológico , Transdução de Sinais
15.
Angew Chem Int Ed Engl ; 61(26): e202203878, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35438229

RESUMO

Despite recent interests in developing lysine-targeting covalent inhibitors, no general approach is available to create such compounds. We report herein a general approach to develop cell-active covalent inhibitors of protein kinases by targeting the conserved catalytic lysine residue using key SuFEx and salicylaldehyde-based imine chemistries. We validated the strategy by successfully developing (irreversible and reversible) covalent inhibitors against BCR-ABL kinase. Our lead compounds showed high levels of selectivity in biochemical assays, exhibited nanomolar potency against endogenous ABL kinase in cellular assays, and were active against most drug-resistant ABL mutations. Among them, the salicylaldehyde-containing A5 is the first-ever reversible covalent ABL inhibitor that possessed time-dependent ABL inhibition with prolonged residence time and few cellular off-targets in K562 cells. Bioinformatics further suggested the generality of our strategy against the human kinome.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Células K562 , Lisina/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia
16.
Acta Pharm Sin B ; 12(2): 982-989, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256959

RESUMO

A resurging interest in targeted covalent inhibitors (TCIs) focus on compounds capable of irreversibly reacting with nucleophilic amino acids in a druggable target. p97 is an emerging protein target for cancer therapy, viral infections and neurodegenerative diseases. Extensive efforts were devoted to the development of p97 inhibitors. The most promising inhibitor of p97 was in phase 1 clinical trials, but failed due to the off-target-induced toxicity, suggesting the selective inhibitors of p97 are highly needed. We report herein a new type of TCIs (i.e., FL-18) that showed proteome-wide selectivity towards p97. Equipped with a Michael acceptor and a basic imidazole, FL-18 showed potent inhibition towards U87MG tumor cells, and in proteome-wide profiling, selectively modified endogenous p97 as confirmed by in situ fluorescence scanning, label-free quantitative proteomics and functional validations. FL-18 selectively modified cysteine residues located within the D2 ATP site of p97. This covalent labeling of cysteine residue in p97 was verified by LC‒MS/MS-based site-mapping and site-directed mutagenesis. Further structure-activity relationship (SAR) studies with FL-18 analogs were established. Collectively, FL-18 is the first known small-molecule TCI capable of covalent engagement of p97 with proteome-wide selectivity, thus providing a promising scaffold for cancer therapy.

17.
Front Pharmacol ; 13: 1081978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686653

RESUMO

Introduction: Bone metastasis of breast cancer (BC) is a process in which the disruption of the bone homeostatic microenvironment leads to an increase in osteoclast differentiation. Ailanthus altissima shows an inhibitory effect on osteoclast differentiation. Ailanthone (AIL) refers to a natural compound isolated from Ailanthus altissima, a Chinese herbal medicine, and has effective anti-tumor activity in numerous cell lines. Its impact on bone metastases for BC is yet unclear. Methods: We measured the effect of AIL on MDA-MB-231 cells by wound healing experiments, Transwell and colony formation experiment. Using the Tartrate-resistant Acid Phosphatase (TRAP) staining tests, filamentous (F-actin) staining and bone resorption test to detect the effect of AIL on the osteoclast cell differentiation of the Bone Marrow-derived Macrophages (BMMs), activated by the MDA-MB-231 cell Conditioned Medium (MDA-MB-231 CM) and the Receptor Activator of Nuclear factor-κB Ligand (RANKL),and to explore its possibility Mechanisms. In vivo experiments verified the effect of AIL on bone destruction in breast cancer bone metastasis model mice. Results: In vitro, AIL significantly decrease the proliferation, migration and infiltration abilities of MDA-MB-231 cells at a safe concentration, and also reduced the expression of genes and proteins involved in osteoclast formation in MDA-MB-231 cells. Osteoclast cell differentiation of the BMMs, activated by MDA-MB-231 CM and RANKL, were suppressed by AIL in the concentration-dependent manner. Additionally, it inhibits osteoclast-specific gene and protein expression. It was noted that AIL inhibited the expression of the osteoclast differentiation-related cytokines RANKL and interleukin-1ß (IL-1ß) that were secreted by the MDA-MB-231 cells after upregulating the Forkhead box protein 3 (FOXP3) expression. Furthermore, AIL also inhibits the expression of the Mitogen-Activated Protein Kinase (MAPK), Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), and Nuclear factor-κB Ligand (NF-κB) signaling pathways, which then suppresses the MDA-MB-231CM-induced development of Osteoclasts. Conclusion: Our study shows that AIL blocks osteoclast differentiation in the bone metastasis microenvironment by inhibiting cytokines secreted by BC cells, which may be a potential agent for the treatment of BC and its secondary bone metastasis.

18.
Chem Commun (Camb) ; 57(48): 5981-5984, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34027538

RESUMO

Although sinomenine (SIN) has been used to treat several inflammation-related diseases in the clinic for decades, the detailed anti-inflammatory mechanism remains elusive. Here, we present a chemoproteomic study that supports a polypharmacological mode of action for SIN to inhibit inflammation. Notably, functional validation revealed multiple new protein regulators whose knockdown could significantly affect inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Morfinanos/farmacologia , Proteômica , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inflamação/induzido quimicamente , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Morfinanos/química , Células RAW 264.7
19.
Angew Chem Int Ed Engl ; 60(31): 17131-17137, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34008286

RESUMO

Targeted covalent inhibitors have re-emerged as validated drugs to overcome acquired resistance in cancer treatment. Herein, by using a carbonyl boronic acid (CBA) warhead, we report the structure-based design of BCR-ABL inhibitors via reversible covalent targeting of the catalytic lysine with improved potency against both wild-type and mutant ABL kinases, especially ABLT315I bearing the gatekeeper residue mutation. We show the evolutionarily conserved lysine can be targeted selectively, and the selectivity depends largely on molecular recognition of the non-covalent pharmacophore in this class of inhibitors, probably due to the moderate reactivity of the warhead. We report the first co-crystal structures of covalent inhibitor-ABL kinase domain complexes, providing insights into the interaction of this warhead with the catalytic lysine. We also employed label-free mass spectrometry to evaluate off-targets of our compounds at proteome-wide level in different mammalian cells.


Assuntos
Desenho de Fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Lisina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Lisina/síntese química , Lisina/química , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-33042860

RESUMO

Objectives: To evaluate metagenomic next-generation sequencing (mNGS) as a diagnostic tool in detecting pathogens from osteoarticular infection (OAI) samples. Methods: 130 samples of joint fluid, sonicate fluid, and tissue were prospectively collected from 92 patients with OAI. The performance of mNGS and microbiology culture was compared pairwise. Results: The overall sensitivity of mNGS was 88.5% (115/130), significantly higher than that of microbiological culture, which had a sensitivity of 69.2% (90/130, p < 0.01). Sensitivity was significantly higher for joint fluid (mNGS: 86.7% vs. microbiology culture: 68.7%, p < 0.01) and sonicate fluid (mNGS: 100% vs. microbiology culture: 66.7%, p < 0.05) samples. mNGS detected 12 pathogenic strains undetected by microbiological culture. Additional pathogens detected by mNGS were Coagulase-negative Staphylococci, Gram-negative Bacillus, Streptococci, Anaerobe, non-tuberculosis mycobacterium, MTCP (p > 0.05), and Mycoplasma (OR = ∞, 95% confidence interval, 5.12-∞, p < 0.001). Additionally, sensitivity by mNGS was higher in antibiotic-treated samples compared to microbiological culture (89.7 vs. 61.5%, p < 0.01). Conclusions: mNGS is a robust diagnostic tool for pathogenic detection in samples from OAI patients, compared to routine cultures. The mNGS technique is particularly valuable to diagnose pathogens that are difficult to be cultured, or to test samples from patients previously treated with antibiotics.


Assuntos
Metagenoma , Metagenômica , Antibacterianos/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...