Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 948: 174701, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997012

RESUMO

Holistic study of glacial lakes and glacial lake outburst floods (GLOFs) in the strategically important China-Nepal transportation corridors is imperative for regional connectivity and disaster risk reduction. This study focuses on four China-Nepal transportation corridors, namely Chentang-Kimathanka, Zhangmu-Kodari, Keyrung-Kathmandu and Taklakot-Hilsa from east to west in the Himalayan region. Within a remote integrated framework, we present the latest high-resolution inventory of glacial lakes, assess their decadal spatio-temporal changes (1992-2022), identify potentially dangerous glacial lakes, and apply hydrodynamic model to assess downstream impacts of possible GLOFs along the study area. The results show 2688 glacial lakes (≥0.001 km2) with a total area of 116.10 ± 8.53 km2 over the study area in 2022. Glacial lakes exhibited spatiotemporal heterogeneity in expansion, with overall expansion of 32 % during 30 years. Keyrung-Kathmandu corridor, among others, was assessed with high GLOF susceptibility. Furthermore, hydrodynamic modeling of four highly dangerous lakes in each transportation area reveals that GLOFs have cross-border effects, impacting ∼103 km of China-Nepal highway, 103 bridges, two major dry ports and 3301 buildings in both countries. Based on these findings, we emphasize the joint efforts of both countries for integrated disaster management for smooth connectivity between two countries and saving downstream population through joint cooperation from central to local government levels by initiating artificial lake lowering, developing cross-border early warning systems and cooperation. This study is valuable for presenting a synergistic study of glacial lakes and GLOF for informing decision- and policy-makers of both China and Nepal for a joint approach to disaster mitigation.

2.
Biomed Opt Express ; 14(1): 106-117, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36698670

RESUMO

Structured illumination microscopy (SIM), as a flexible tool, has been widely applied to observing subcellular dynamics in live cells. It is noted, however, that SIM still encounters a problem with theoretical resolution limitation being only twice over wide-field microscopy, where imaging of finer biological structures and dynamics are significantly constrained. To surpass the resolution limitation of SIM, we developed an image postprocessing method to further improve the lateral resolution of SIM by an untrained neural network, i.e., deep resolution-enhanced SIM (DRE-SIM). DRE-SIM can further extend the spatial frequency components of SIM by employing the implicit priors based on the neural network without training datasets. The further super-resolution capability of DRE-SIM is verified by theoretical simulations as well as experimental measurements. Our experimental results show that DRE-SIM can achieve the resolution enhancement by a factor of about 1.4 compared with conventional SIM. Given the advantages of improving the lateral resolution while keeping the imaging speed, DRE-SIM will have a wide range of applications in biomedical imaging, especially when high-speed imaging mechanisms are integrated into the conventional SIM system.

4.
Vis Comput Ind Biomed Art ; 4(1): 8, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33830349

RESUMO

Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals. The Fabry-Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithography machine. In this study, the outer diameter of the core cladding was 250 µm, the diameter of the core was 9 µm, and the microcavity sensing unit was only 30 µm. It could measure ultrasonic signals with high precision. The characteristics of the proposed ultrasonic sensor were investigated, and its feasibility was proven through experiments. Its design has a small size and can replace a larger ultrasonic detector device for photoacoustic signal detection. The sensor is applicable to the field of biomedical information technology, including medical diagnosis, photoacoustic endoscopy, and photoacoustic imaging.

5.
ACS Sens ; 6(5): 1840-1848, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33861572

RESUMO

For biomedical photoacoustic applications, an ongoing challenge in simultaneous volumetric imaging and spectroscopic analysis arises from ultrasonic detectors lacking high sensitivity to pressure transients over a broad spectral bandwidth. Photoacoustic impulses can be measured on the basis of the ultrafast temporal dynamics and highly sensitive response of surface plasmon polaritons to the refractive index changes. Taking advantage of the ultra-sensitive phase shift of surface plasmons caused by ultrasonic perturbations instead of the reflectivity change [as is the case for traditional surface plasmon resonance (SPR) sensors], a novel SPR sensor based on phase-shifted interrogation was developed for the broadband measurement of photoacoustically induced pressure transients with improved detection sensitivity. Specifically, by encoding the acoustically modulated phase change into time-varying interference intensity, our sensor achieved an almost five-fold sensitivity enhancement (∼98 Pa noise-equivalent pressure) compared with the reflectivity-mode SPR sensing technologies (∼470 Pa) while retaining a broadband acoustic response of ∼174 MHz. Incorporating our sensor into an optical-resolution photoacoustic microscope, we performed label-free imaging of a zebrafish eye in vivo, enabling simultaneous volumetric visualization and spectrally resolved discrimination of anatomical features. This novel sensing technology has potential for advancing biomedical ultrasonic and/or photoacoustic investigations.


Assuntos
Ressonância de Plasmônio de Superfície , Peixe-Zebra , Animais , Microscopia , Refratometria , Análise Espectral
6.
ACS Sens ; 5(2): 510-518, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31927913

RESUMO

Label-free imaging and investigation of living cells are significant for many biomedical studies. It has been challenging to detect the epithelial-mesenchymal transition of cells in situ without affecting cellular activity. Here, we present a common-path differential confocal microscope based on the polarization-sensitive absorption of graphene to realize high-performance refractive index imaging and differentiation of living colorectal cancer cells (HCT116) with large detecting depth (1.29 µm), excellent refractive index resolution (2.86 × 10-5 RIU), and high spatial resolution (727 nm) simultaneously. Compared with epithelial (parental HCT116) cells, mesenchymal (paclitaxel-resistant HCT116) cells manifest generally lower refractive index values through the refractive index statistics, which is due to the stronger migration ability and weaker surface adherence of mesenchymal cells. The graphene-based microscopy provides an effective label-free approach to high-resolution imaging and study of living cell kinetics, and we expect it to be widely used in the research fields of pathology, tumorigenesis, and chemotherapy.


Assuntos
Células Epiteliais/química , Grafite/química , Células-Tronco Mesenquimais/química , Microscopia Confocal/métodos , Diferenciação Celular , Humanos
7.
Biomed Opt Express ; 11(12): 7096-7108, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408982

RESUMO

Non-invasive imaging of living cells is an advanced technique that is widely used in the life sciences and medical research. We demonstrate a refractive index quantification microscopy (RIQM) that enables label-free studies of glioma cell-substrate contacts involving cell adhesion molecules and the extracellular matrix. This microscopy takes advantage of the smallest available spot created when an azimuthally polarized perfect optical vortex beam (POV) is tightly focused with a first-order spiral phase, which results in a relatively high imaging resolution among biosensors. A high refractive index (RI) resolution enables the RI distribution within neuronal cells to be monitored. The microscopy shows excellent capability for recognizing cellular structures and activities, demonstrating great potential in biological sensing and live-cell kinetic imaging.

8.
Opt Express ; 27(20): 29273-29286, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684664

RESUMO

Graphene exhibits extraordinary opto-electronic properties due to its unique dynamic conductivity, bringing great value in optical sensing, surface plasmon modulation and photonic devices. Based on the polarization-sensitive absorption of graphene working at near infrared to ultraviolet wavelengths, we theoretically investigate the refractive index sensing and imaging mechanism under oblique and tight focusing incidences of light respectively. We demonstrate that such graphene-based methods can provide ultrahigh refractive index resolution (∼2.09×10-8 RIU) for label-free sensing, and high transverse spatial resolution (∼200 nm) and large longitudinal detecting length (∼750 nm) for imaging under 532 nm incident wavelength. The proposed methods could potentially guide future researches in graphene optical detection, non-invasive biological sensing and imaging, and other applications.

9.
ACS Sens ; 4(10): 2697-2705, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31556602

RESUMO

Relying on high-sensitivity refractive index sensing and a highly constrained evanescent field of surface plasmon resonance (SPR), broadband photoacoustic (PA) pressure transients were measured using an SPR sensor instead of routinely used piezoelectric ultrasonic transducers. An acoustic cavity made from stainless steel and having a designed ellipsoidal inner surface redirected laser-induced PA waves from the PA excitation spot to the SPR sensor. By incorporating the SPR sensor with the acoustic cavity, we developed optical-resolution photoacoustic microscopy (OR-PAM) with multiple advantages, including reflection-mode signal capture, improved PA detection sensitivity, increased PA spectral bandwidth as broad as ∼98 MHz, and micrometer-scale lateral resolution. This allowed label-free volumetric PA imaging of vasculature in not only the thin ear but also the thick forelimb of living mice. With these combined advantages, our OR-PAM system potentially offers more opportunities for biomedical investigation, for example, when studying microcirculations in the eye and cortex.


Assuntos
Microscopia/métodos , Técnicas Fotoacústicas , Animais , Orelha , Membro Anterior , Camundongos , Ressonância de Plasmônio de Superfície
10.
ACS Appl Mater Interfaces ; 11(30): 27378-27385, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31267733

RESUMO

Photoacoustic microscopy (PAM) can measure optical absorption-based molecular specificities within tissues. Despite the diffraction-limited lateral resolution in optical-resolution photoacoustic microscopy (OR-PAM), the ongoing challenge is poor axial resolution because of an insufficient ultrasound detection bandwidth, which hampers PAM volumetric imaging. We propose polarization-differential surface plasmon resonance (SPR) sensing for broadband and high-sensitivity photoacoustic (PA) detection, allowing OR-PAM with comparable resolution along lateral and axial directions. This sensor possesses an estimated noise-equivalent-pressure sensitivity of ∼477 Pa over an approximately linear pressure response up to 107 kPa. Moreover, an improved PA detection bandwidth of ∼173 MHz permits an axial resolution (∼7.6 µm) that approaches the lateral resolution (∼4.5 µm) of our OR-PAM system. The capability in spatially isometric micrometer-scale resolution enables in vivo volumetric label-free imaging of the microvasculature of a mouse ear. The SPR sensing technology promises broader applications of PAM in biomedical studies such as microcirculation.


Assuntos
Orelha/diagnóstico por imagem , Microvasos/ultraestrutura , Imagem Molecular/métodos , Ressonância de Plasmônio de Superfície , Animais , Camundongos , Microscopia/métodos , Microvasos/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Ultrassonografia/métodos
11.
Opt Express ; 27(6): 9250-9257, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052732

RESUMO

Structured illumination microscopy (SIM) is a powerful super-resolved imaging technique which enables to perform fast and in vivo imaging of bio-samples. In order to achieve a better resolution of a SIM system, evanescent waves with larger in-plane wave-vector are preferred for SIM, among which the total internal reflection (TIRF-SIM) and the plasmonic SIM (pSIM) configurations are widely studied. Here, we demonstrated a metal-dielectric waveguide (MDW) based SIM system - termed as MDW-SIM, which can achieve a good compromise between TIRF-SIM and pSIM. The MDW can support a low-loss waveguide mode at an aqueous environment, with an evanescent tail existing above the water/dielectric interface for SIM. A proof-of-concept imaging experiment was performed on fluorescent beads, where a spatial resolution of 86nm was achieved at a 473nm illumination wavelength and a 1.45 numerical aperture objective lens. The proposed MDW-SIM has a great potential for the bio-imaging applications.

12.
Nanoscale ; 10(18): 8606-8614, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29696248

RESUMO

Photoacoustic microscopy (PAM) enables the measurement of properties associated with optical absorption within tissues and complements sophisticated technologies employing optical microscopy. An inadequate frequency response as determined by a piezoelectric ultrasonic transducer results, however, in poor depth resolution and inaccurate measurements of the coefficients of optical absorption. We developed a PAM system configured as an attenuated total reflectance sensor with a ten-layer graphene film sandwiched between a prism and water (the coupling medium) for photoacoustic (PA) wave detection. Transients of the PA pressure cause perturbations in the refractive index of the water thereby changing the polarization-dependent absorption of the graphene film. The signal in PA detection involves recording the difference in the temporal-varying reflectance intensity between the two orthogonally polarized probe beams. The graphene-based sensor has an estimated noise-equivalent-pressure sensitivity of ∼550 Pa over an approximately linear pressure response from 11.0 kPa to 55.0 kPa. Moreover, it enables a much broader PA bandwidth detection of up to ∼150 MHz, primarily dominated by a highly localized evanescent field. From the strong optical absorption of inherent hemoglobin, in vivo label-free PAM imaging provided a three-dimensional viewing of the microvasculature of a mouse ear. These results suggest great potential for graphene-based PAM in biomedical investigations, such as microcirculation studies.

13.
Nanoscale ; 10(4): 1759-1765, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29308810

RESUMO

Non-invasive living cell microscopy in real time is essential for a wide variety of biomedical research. Here, we present a subcellular refractive index imaging technique for living cells based on a graphene biosensor system. Owing to the optical reflectivity differences of graphene to s- and p-polarizations, a 45° generalized-cylindrical-vector-polarized laser beam is employed to demodulate the reflected cylindrical vector beam for differential detecting. Benefitting from the vector beam-enabled common-path graphene biosensor, the imaging spatial resolution and refractive index sensitivity are noticeably improved. Subcellular refractive index mapping of live human colonic cancer cells is perfectly achieved without inducing any cell damage. Furthermore, real-time monitoring of an individual cell is also performed with the disassembly of the cell nucleolus clearly observed. This technique would be a promising tool for the study of living cell morphology, kinetics, and pathology, and for other biomedical research.


Assuntos
Técnicas Biossensoriais , Neoplasias do Colo/diagnóstico por imagem , Grafite/química , Microscopia , Humanos , Refratometria , Análise de Célula Única , Células Tumorais Cultivadas
14.
Opt Express ; 23(23): 30143-8, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26698495

RESUMO

We demonstrate an all-optical plasmonic structured illumination microscopy (PSIM) technique. A set of plasmonic standing-wave patterns is excited by amplitude-modified optical vortices (OVs), which have fractional topological charges for precise phase shift of {-2π/3, 0, 2π/3}. A specially designed optical aperture is introduced to modify the OVs in order to improve the uniformity of interference patterns. The imaging results of fluorescent beads reveal a sub-100nm resolving capability in aqueous environment. This PSIM technique as a structure-free, wide-field and super-resolved imaging technique is of great potential for low-cost biological dynamic imaging applications.

15.
Appl Opt ; 53(5): 836-40, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663261

RESUMO

In this paper, the phase-stepping technique is applied to improve a phase-sensitive surface plasmon resonance biosensor based on differential interferometry between focused radially polarized and azimuthally polarized cylindrical vector beams. Detailed analysis is presented for the phase-stepping method, and the least squares unwrapping algorithm is employed to detect the phase distribution in correspondence to the refractive index of sample. Benefiting from the phase-stepping technique, both the measurement speed and sensitivity are improved significantly. The proposed sensor maintains high sensitivity of 9.4×10-7 RIU/1° and a wide dynamic range of 0.35 RIU simultaneously. Furthermore, the real-time binding reaction process of bovine serum albumin with antibody is monitored to verify the system for potential biological applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Imunoensaio/instrumentação , Soroalbumina Bovina/análise , Ressonância de Plasmônio de Superfície/instrumentação , Animais , Bovinos , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Soroalbumina Bovina/imunologia
16.
Opt Lett ; 38(22): 4770-3, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322128

RESUMO

Differential phase measurement between radially polarized (RP) and azimuthally polarized (AP) beams is an important technique in microscopic surface plasmon resonance (SPR) biosensors as reported in our earlier works [Opt. Lett.37, 2091 (2012); Appl. Phys. Lett.102, 011114 (2013)]. However, such a technique suffers complex beam splitting, detection, and data processing procedures for RP and AP beams which may lower the accuracy of phase measurement. In this Letter, a novel plasmonic petal-shaped vector beam is proposed instead of RP and AP beams, greatly simplifying the sensor system and enabling single measurement in differential interferometry. Moreover, an improved ultrahigh sensitivity on the order of 10(-7) refractive index units (RIUs) is experimentally verified in the proposed system.


Assuntos
Técnicas Biossensoriais/instrumentação , Iluminação/instrumentação , Microscopia de Contraste de Fase/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
17.
Opt Lett ; 37(11): 2091-3, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22660131

RESUMO

A novel phase-sensitive surface plasmon resonance (pSPR) biosensor based on differential phase measurement between two cylindrical vector beams, namely radially polarized and azmuthally polarized beams, is proposed and studied in an inverted microscope. Different from a fixed angle or a relatively small angular range for SPR excitation in the attenuated total reflection (ATR) configuration, the signal beam focused by a total internal reflection fluorescence microscopic objective contains the entire angular range from 0 to the maximum angle given by the numerical aperture, leading to a dynamic range of 0.41 RIU which is over seven times wider than the best result of the ATR pSPR sensor. Moreover, with the technique of differential phase measurement between radial and azimuthal polarizations employed in our configuration, high sensitivity of ±9.05×10(-8) refractive index unit/1 deg can simultaneously be achieved in principle. The proposed technique maintains the unique advantages in terms of securing high imaging resolution and sensitivity with an ultra-wide dynamic range simultaneously.


Assuntos
Microscopia , Ressonância de Plasmônio de Superfície/métodos , Ouro , Fenômenos Ópticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...