Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Med Eng Phys ; 127: 104158, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692761

RESUMO

BACKGROUND: The intervertebral disc exhibits not only strain rate dependence (viscoelasticity), but also significant asymmetry under tensile and compressive loads, which is of great significance for understanding the mechanism of lumbar disc injury under physiological loads. OBJECTIVE: In this study, the strain rate sensitive and tension-compression asymmetry of the intervertebral disc were analyzed by experiments and constitutive equation. METHOD: The Sheep intervertebral disc samples were divided into three groups, in order to test the strain rate sensitive mechanical behavior, and the internal displacement as well as pressure distribution. RESULTS: The tensile stiffness is one order of magnitude smaller than the compression stiffness, and the logarithm of the elastic modulus is approximately linear with the logarithm of the strain rate, showing obvious tension-compression asymmetry and rate-related characteristics. In addition, the sensitivity to the strain rate is the same under these two loading conditions. The stress-strain curves of unloading and loading usually do not coincide, and form a Mullins effect hysteresis loop. The radial displacement distribution is opposite between the anterior and posterior region, which is consistent with the stress distribution. By introducing the damage factor into ZWT constitutive equation, the rate-dependent viscoelastic and weakening behavior of the intervertebral disc can be well described.


Assuntos
Força Compressiva , Disco Intervertebral , Estresse Mecânico , Animais , Disco Intervertebral/fisiologia , Ovinos , Fenômenos Biomecânicos , Resistência à Tração , Suporte de Carga , Elasticidade
2.
J Orthop Surg Res ; 19(1): 15, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167031

RESUMO

BACKGROUND: Lumbar disc herniation (LDH) is the main clinical cause of low back pain. The pathogenesis of lumbar disc herniation is still uncertain, while it is often accompanied by disc rupture. In order to explore relationship between loading rate and failure mechanics that may lead to lumbar disc herniation, the failure mechanical properties of the intervertebral disc under high rates of loading were analyzed. METHOD: Bend the lumbar motion segment of a healthy sheep by 5° and compress it to the ultimate strength point at a strain rate of 0.008/s, making a damaged sample. Within the normal strain range, the sample is subjected to quasi-static loading and high loading rate at different strain rates. RESULTS: For healthy samples, the stress-strain curve appears collapsed only at high rates of compression; for damaged samples, the stress-strain curves collapse both at quasi-static and high-rate compression. For damaged samples, the strengthening stage becomes significantly shorter as the strain rate increases, indicating that its ability to prevent the destruction is significantly reduced. For damaged intervertebral disc, when subjected to quasi-static or high rates loading until failure, the phenomenon of nucleus pulposus (NP) prolapse occurs, indicating the occurrence of herniation. When subjected to quasi-static loading, the AF moves away from the NP, and inner AF has the greatest displacement; when subjected to high rates loading, the AF moves closer to the NP, and outer AF has the greatest displacement. The Zhu-Wang-Tang (ZWT) nonlinear viscoelastic constitutive model was used to describe the mechanical behavior of the intervertebral disc, and the fitting results were in good agreement with the experimental curve. CONCLUSION: Experimental results show that, both damage and strain rate have a significant effect on the mechanical behavior of the disc fracture. The research work in this article has important theoretical guiding significance for preventing LDH in daily life.


Assuntos
Deslocamento do Disco Intervertebral , Disco Intervertebral , Animais , Ovinos , Deslocamento do Disco Intervertebral/patologia , Vértebras Lombares/patologia , Suporte de Carga , Fenômenos Biomecânicos , Estresse Mecânico , Disco Intervertebral/patologia
3.
Biomater Adv ; 149: 213389, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965402

RESUMO

Silk fibroin-collagen type II scaffolds are promising in cartilage tissue engineering due to their suitable biological functionality to promote proliferation of chondrocytes in vitro. However, their degradation properties, which are of crucial importance as scaffold degradation should consistent with the new tissue formation process, are still unknown. In this study, degradability of silk fibroin-collagen type II cartilage scaffolds was probed both in vitro and in vivo. In vitro degradation experiments show that the scaffolds decreased 32.25 % ± 0.62 %, 34.27 % ± 0.96 %, 36.27 % ± 2.39 % in weight after 8 weeks of degradation at the irrigation velocity of 0 mL/min, 7.89 mL/min and 15.79 mL/min. The degradation ratio, which increases with time and increasing irrigation velocity, is described by combining the built mathematic model and finite element modeling method. The scaffolds after 8 weeks of degradation in vitro keep their mechanical structural integrity to support new tissues. In vivo degradation experiments conducted in rabbits further show that the scaffolds degrade gradually, be absorbed with time and finally collapse in structure. The degradation process is accompanied by the growth of fibrous tissues and the scaffold is filled by fibrous tissues after 12 weeks of implantation. Immunohistology analysis shows that the inflammation caused by scaffolds is controllable and gradually alleviates with time. To sum up, silk fibroin-collagen type II cartilage scaffolds, which show suitable mechanical properties and biocompatibility during degradation in vitro and in vivo, have great potential in cartilage repair. The novelty of the study is that it not only introduces a mathematical model to predict the irrigation degradation ratio, but also provides experimental degradation data support for clinical application of silk fibroin-collagen type II cartilage scaffolds.


Assuntos
Fibroínas , Animais , Coelhos , Fibroínas/farmacologia , Colágeno Tipo II , Alicerces Teciduais/química , Cartilagem , Condrócitos
4.
Comput Methods Biomech Biomed Engin ; 24(14): 1578-1587, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33724105

RESUMO

Aviation medical research shows that disuse osteoporosis will occur after long-term space flight. Even with countermeasures such as exercise and drug treatments, this outcome cannot be avoided in flight. In recent years, the application of artificial gravity devices that change the mechanical microenvironment of bone in microgravity have shown promise in mitigating the risk of disuse osteoporosis. Considering the existence of osteocytes, a fluid-solid coupling finite element model for osteons with two-stage pore structure (Haversian canal, lacunar-canalicular system) was established. In order to study the changes in the mechanical behavior of osteocytes under the action of various artificial gravity (AG) devices, including long-arm centrifuge (LAC), short-arm centrifuge (SAC), and a lower body negative pressure (LBNP) chamber. In addition, the difference in pulsating pressure and static pressure stress caused by the gravity gradient under the AG devices was examined. The simulation results showed that the AG devices could effectively improve the stress level of osteocytes in microgravity. The mechanical microenvironment of osteocytes that was provided by the LAC was closest to that of the Earth's gravitational field. The mechanical stimulation on osteocytes was not significantly improved by the SAC, but from a practical viewpoint, it occupied less space than the LAC. The LBNP chamber created a higher level of stress for osteocytes. Therefore, the LAC was an ideal device for replacing Earth's gravitational field, except for the practical limitations of its physical size. In contrast, the LBNP device had the greatest application potential in training for its expansibility and convenience.


Assuntos
Gravidade Alterada , Ausência de Peso , Simulação por Computador , Ósteon , Osteócitos
5.
Comput Biol Med ; 128: 104122, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248365

RESUMO

BACKGROUND: The number of oblique lumbar interbody fusion (OLIF) procedures has continued to rise over recent years. Adjacent segment degeneration (ASD) is a common complication following vertebral body fusion. Although the precise mechanism remains uncertain, ASD has gradually become more common in OLIF. Therefore, the present study analyzed the association between disc degeneration and OLIF to explore whether adjacent degeneration was promoted by OLIF in degenerative disc disease. METHODS: A three-dimensional nonlinear finite element (FE) model of the L3-S1 lumbar spine was developed and validated. Three lumbar spine degeneration models with different degrees of degeneration (mild, moderate and severe) and a model of OLIF surgery were constructed at the L4-L5 level. When subjected to a follower compressive load (500 N), hybrid moment loading was applied to all models of the lumbar spine and the range of motion (ROM), intradiscal pressure (IDP), facet joint force (FJF), average mises stress in the annulus (AMSA), average tresca stress in the annulus (ATSA) and average endplate stress (AES) were measured. RESULTS: Compared with the healthy lumbar spine model, the ROM, IDP, FJF, AMSA, ATSA and AES of the segments adjacent to the degenerated segment increased in each posture as the degree of disc degeneration increased. In different directions of motion, the ROM, IDP, FJF, AMSA, ATSA and AES in the OLIF model in the L3-L4 and L5-S1 segments were higher than those of the healthy model and each degenerated model. Compared with the healthy model, the largest relative increase in biomechanical parameters above (ROM, IDP, FJF, AMSA, ATSA or AES) was observed in the L3-L4 segment in the OLIF model, of 77.13%, 32.63%, 237.19%, 45.36%, 110.92% and 80.28%, respectively. In the L5-S1 segment the corresponding values were 68.88%, 36.12%, 147.24%, 46.00%, 45.88% and 51.29%, respectively. CONCLUSIONS: Both degenerated discs and OLIF surgery modified the pattern of motion and load distribution of adjacent segments (L3-L4 and L5-S1 segments). The increases in the biomechanical parameters of segments adjacent to the surgical segment in the OLIF model were more apparent than those of the degenerated models. In summary, OLIF risked accelerating the degeneration of segments adjacent to those of a surgical segment.


Assuntos
Degeneração do Disco Intervertebral , Fusão Vertebral , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/cirurgia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Amplitude de Movimento Articular
6.
Int. j. morphol ; 38(6): 1597-1605, Dec. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1134485

RESUMO

SUMMARY: Lumbar disc herniation is considered to be the main pathological factor for the common clinical disease of low back pain. Biomechanical factor is an important cause of lumbar disc herniation, so it is urgent to analyze the stress/strain behavior of intervertebral disc under different loading condition. Slow repetitive loading is considered to be an important factor of spine and disc injuries, and the effect of fatigue load on internal displacement in the intervertebral disc was investigated by applying the optimized digital image correlation technique in this study. The first finding was that fatigue load had a significant effect on the displacement distribution in the intervertebral disc under compression. Superficial AF exhibited the largest axial displacements before fatigue load, while it exhibited the smallest axial displacements after fatigue load. Inner AF exhibited slightly smaller radial displacements than outer AF before fatigue load, while it exhibited significantly greater radial displacements than outer AF displacements after fatigue load. The second finding was that fatigue load had a certain effect on the internal displacement distribution in the flexed intervertebral disc under compression. Middle AF exhibited the smallest axial displacements before fatigue load, while deep AF exhibited the smallest axial displacements after fatigue load. The radial displacement distribution did not change before and after fatigue load, as the radial displacement in outer AF was the smallest, while the radial displacement in inner AF was the largest. The third finding was that with the increase in fatigue time and amplitude, the Young's modulus of the intervertebral disc increased significantly. This study can provide the basis for clinical intervertebral disc disease prevention and treatment? and is important for mechanical function evaluation of artificial intervertebral disc as well.


RESUMEN: La hernia de disco lumbar se considera el principal factor patológico para la enfermedad clínica común del dolor lumbar. El factor biomecánico es una causa importante de hernia de disco lumbar, por lo que es urgente analizar el comportamiento de esfuerzo / tensión del disco intervertebral bajo diferentes condiciones de carga. La carga repetitiva lenta se considera un factor importante de lesiones de columna y disco, y en este estudio el efecto de la carga de fatiga sobre el desplazamiento interno en el disco intervertebral se investigó mediante la aplicación de la técnica de correlación de imagen digital optimizada. El primer hallazgo fue que la carga de fatiga tuvo un efecto significativo en la distribución del desplazamiento en el disco intervertebral bajo compresión. El AF superficial exhibió los desplazamientos axiales más grandes antes de la carga de fatiga, mientras que exhibió los desplazamientos axiales más pequeños después de la carga de fatiga. El AF interno exhibió desplazamientos radiales ligeramente más pequeños que el AF externo antes de la carga de fatiga, mientras que exhibió desplazamientos radiales significativamente mayores que los desplazamientos AF externos después de la carga de fatiga. El segundo hallazgo fue que la carga de fatiga tenía un cierto efecto sobre la distribución del desplazamiento interno en el disco intervertebral flexionado bajo compresión. El AF medio exhibió los desplazamientos axiales más pequeños antes de la carga de fatiga, mientras que el AF profundo exhibió los desplazamientos axiales más pequeños después de la carga de fatiga. La distribución del desplazamiento radial no cambió antes ni después de la carga de fatiga, ya que el desplazamiento radial en la FA externa fue el más pequeño, mientras que el desplazamiento radial en la FA interna fue el más grande. El tercer hallazgo fue que con el aumento del tiempo de fatiga y la amplitud, el módulo de Young del disco intervertebral aumentó significativamente. Este estudio puede proporcionar la base para la prevención y el tratamiento clínico de la enfermedad del disco intervertebral, y también es importante para la evaluación de la función mecánica del disco intervertebral artificial.


Assuntos
Humanos , Deslocamento do Disco Intervertebral/etiologia , Deslocamento do Disco Intervertebral/patologia , Fenômenos Biomecânicos , Força Compressiva , Fadiga , Resistência à Flexão , Disco Intervertebral/patologia , Vértebras Lombares/patologia , Região Lombossacral
7.
Orthop Surg ; 12(6): 1980-1989, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33200562

RESUMO

OBJECTIVE: To evaluate the strain-rate-dependent viscoelastic properties of the intervertebral disc by in vitro experiments. METHOD: The biomechanical experiments were conducted from September 2019 to December 2019. The lumbar spines of sheep were purchased within 4-6 hours from the local slaughterhouse, and the intervertebral disc samples were divided into three groups. In rupture group, the samples were used to test the mechanical behavior of the intervertebral disc rupture at different strain rates. In fatigue injury group, the samples were used to test the mechanical behavior of fatigue injury on the intervertebral disc under different strain rates. In internal displacement group, the samples were used to test the internal displacement distribution of the intervertebral disc at different strain rates by applying an optimized digital image correlation (DIC) technique. RESULTS: Both the yielding and cracking phenomenon occurs at fast and medium loading rates, while only the yielding phenomenon occurs at a slow loading rate. The yield stress, compressive strength, and elastic modulus all increase with the increase of the strain rate, while the yield strain decreases with the increase of the strain rate. The logarithm of the elastic modulus in the intervertebral disc is approximately linear with the logarithm of the strain rate under different strain rates. Both before and after fatigue loading, the stiffness in the loading and unloading curves of the intervertebral disc is inconsistent, forming a hysteresis loop, which is caused by the viscoelastic effect. The strain rate has no significant effect on the internal displacement distribution of the intervertebral disc. Based on the experimental data, the constitutive relationship of the intervertebral disc at different strain rates is obtained. The fitting curves are well coupled with the experimental data, while the fitting parameters are approximately linear with the logarithm of the strain rate. CONCLUSIONS: These experiments indicate that the strain rate has a significant effect on the mechanical behavior of the intervertebral disc rupture and fatigue injury, while the constitutive equation can predict the rate-dependent mechanical behavior of lumbar intervertebral disc under flexion very well. These results have important theoretical guiding significance for preventing lumbar disc herniation in daily life.


Assuntos
Força Compressiva/fisiologia , Disco Intervertebral/fisiologia , Vértebras Lombares/fisiologia , Animais , Fenômenos Biomecânicos , Ovinos
8.
J Orthop Translat ; 23: 107-112, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32642425

RESUMO

PURPOSE: Percutaneous full-endoscopic anterior cervical discectomy (PEACD) and posterior cervical foraminotomy (PCF) as alternatives to anterior cervical discectomy and fusion (ACDF) are extensively used in the treatment of patients with cervical spondylotic radiculopathy. The possibility of avoiding the risk of accelerated degeneration of the adjacent segments caused by fusion is claimed to be the theoretical advantage of these approaches; however, there is a paucity of supportive evidence from biomechanical data. Therefore, this study investigated and compared the effects of PCF, PEACD, and ACDF on the adjacent segments and operative segments of the cervical spine from a biomechanical standpoint. METHOD: A normal and intact three-dimensional finite element digital model of C4-C7 was constructed and validated, and the finite element models of PEACD, PCF, and ACDF were obtained by modifying the C4-C7 model. All models were exposed to identical conditions of load during flexion, extension, axial rotation, and lateral bending. We calculated the range of motion (ROM), intervertebral disc pressure (IDP), and facet joint contact force (FJCF) of the operative segment and the adjacent segment in different motion conditions. RESULT: The conventional ACDF had a remarkable influence on the ROM and IDP of the operative segment and the adjacent segments. In the PEACD model, the change of ROM was not noticeable; the IDP of the operative segment was significantly smaller, whereas the change of IDP of the adjacent segment was insignificant. In the PCF model, the ROM and IDP of all segments remained unaffected.During extension, the facet joint contact force changed significantly after ACDF, and it changed slightly after PECAD and PCF. CONCLUSION: By comparatively analyzing the biomechanical changes of the cervical spine after PCF, PEACD, and ACDF using the finite element method, we suggested that PCF and PEACD were more suitable for surgical intervention of cervical spondylotic radiculopathy than ACDF from a biomechanical point of view and PCF may outperform PEACD.

9.
Comput Biol Med ; 119: 103700, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32339112

RESUMO

BACKGROUND: The lack of mass transfer in microgravity might be the underlying cause of disuse osteoporosis in astronauts after long-term space flights. The osteons are cylindrical structures and are the main structural units of the diaphysis in long bones. METHODS: A multi-scale 3D fluid-solid coupled finite element model of osteon with a two-stage pore structure was developed using COMSOL software in order to investigate solute transport behaviors in the lacunar-canalicular system (LCS) induced by physiological strain loading. Certain small molecules that are necessary as solutes in tissue fluid for osteocyte metabolism were simplified to micro-particles. A comparative analysis of solute transport behaviors in the LCS induced by physiological strain loading was conducted with a frequency of 0.2-2.5 Hz in microgravity and the Earth's gravitational fields. RESULTS: The average velocity of solute transport in lacunae in microgravity was 2-3 orders of magnitude lower than in Earth's gravitational field. The number of particles that represented solute transport quantity in the middle and deep lacunae increased steadily with a load frequency within the Earth's gravitational field. However, it differed based on the load frequency in microgravity, with the number of particles increasing with frequencies in the range of 0.2-0.5 Hz and 0.8-2 Hz, and decreasing with frequencies in the range of 0.5-0.8 Hz. CONCLUSIONS: A moving load with appropriate frequency could promote solute transport to the middle and deep lacunae, effectively preventing apoptosis of deep osteocytes due to a lack of nutrients. The results of this study provided theoretical guidance for preventing bone loss in astronauts during long-term space flights.


Assuntos
Osteoporose , Ausência de Peso , Osso e Ossos , Simulação por Computador , Humanos , Osteócitos
10.
Orthop Surg ; 11(5): 895-902, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31663289

RESUMO

OBJECTIVE: To evaluate the ratcheting behavior of intervertebral discs (IVD) by experiments and theoretical study. METHOD: The lumbar spines of sheep were obtained at a local slaughterhouse, and the IVD was processed with upper and lower vertebral bodies (about 5 mm) to ensure the mechanical state of the IVD in situ. The ratcheting tests of uniaxial cyclic compression loading for disc samples is carried out using the Electronic Universal Fatigue Testing System at room temperature. The effects of different stress variations, stress rates, as well as different segments on ratcheting behavior of discs were investigated. RESULTS: The ratcheting strain evolution of lumbar IVD include stages of sharp increase and asymptotic stability. Both the ratcheting strain and ratcheting strain rate increase with an increase of stress variation (R = 0.962, P = 0.004) but decrease with an increase of the stress rate (R = -0.876, P = 0.019 ). Compression stiffness increases with an increase of the stress rate (R = 0.964, P = 0.004 ) or stress variation (R = 0.838, P = 0.037). Compared with L5 - 6 , the L6 - 7 disc showed less ratcheting strain (P = 0.04 ), indicating that the disc at this segment was more resistant to the impact of the ratcheting cycle. In addition, ratcheting strain evolution was predicted using a ratcheting evolution constitutive equation, and the predicted results were in good agreement with experimental data. CONCLUSIONS: The ratcheting behavior occurs in IVD, and this cumulative deformation is consistent with the general ratcheting behavior. The constitutive equation can predict the ratcheting strain evolution of IVD very well. These results are of great significance for the analysis of defects and the development of repair in IVD.


Assuntos
Força Compressiva , Disco Intervertebral/fisiologia , Vértebras Lombares/fisiologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Ovinos
11.
Mater Sci Eng C Mater Biol Appl ; 105: 110018, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546346

RESUMO

Osteoarthritis is caused by injuries and cartilage degeneration. Cartilage tissue engineering provides new ideas for the treatment of osteoarthritis. Herein, the different ratios composite membranes of silk fibroin/collagen type II were constructed (SF50-50:50, SF70-70:30, SF90-90:10). The surface properties of the composite membranes and chondrocyte morphology were observed by SEM (scanning electron microscopy). Physical functionality as well as stability of composite membranes was evaluated from tensile mechanical properties, the percentage of swelling and degradation. The tensile mechanical behavior of SF70 composite membranes was also predicted based on the constitutive model established in this study, and it is found that the experimental results and predictions were in good agreement. Biocompatibility was evaluated using chondrocytes (ADTC-5) culture. Cell proliferation was analyzed and the treatment of live/dead double staining was performed to assess the viability on chondrocytes. To sum up, SF70 showed the suitable morphology, physical stability, and biological functionality to promote proliferation of chondrocytes. This indicates that the mixing ratio of SF70 shows promise in the future as a scaffold material for cartilage repair.


Assuntos
Materiais Biocompatíveis/química , Colágeno Tipo II/química , Fibroínas/química , Teste de Materiais , Fenômenos Mecânicos , Membranas Artificiais , Animais , Bovinos , Adesão Celular , Linhagem Celular , Proliferação de Células , Forma Celular , Condrócitos/citologia , Condrócitos/ultraestrutura , Humanos , Resistência à Tração
12.
Biomed Eng Online ; 18(1): 85, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362738

RESUMO

BACKGROUND: Ratcheting strain is produced due to the repeated accumulation of compressive strain in cartilage and may be a precursor to osteoarthritis. The aim of this study was to investigate the ratcheting behaviors of young and adult articular cartilages under cyclic compression by experiments and theoretical predictions. METHODS: A series of uniaxial cyclic compression tests were conducted for young and adult cartilage, and the effects of different loading conditions on their ratcheting behaviors were probed. A theoretical ratcheting model was constructed and applied to predict the ratcheting strains of young and adult cartilages with different loading conditions. RESULTS: Ratcheting strains of young and adult cartilages rapidly increased at the initial stage, followed by a slower increase in subsequent stages. The strain accumulation value and its rate for young cartilage were greater than them for adult cartilage. The ratcheting strains of the two groups of cartilage samples decreased with increasing stress rate, while they increased with increasing stress amplitude. As the stress amplitude increased, the gap between the ratcheting strains of young and adult cartilages increased gradually. The ratcheting strains of young and adult cartilages decreased along the cartilage depth from the surface to the deep layer. The ratcheting strains of different layers increased with the compressive cycle, and the difference among the three layers was noticeable. Additionally, the theoretical predictions agreed with the experimental data. CONCLUSIONS: Overall, the ratcheting behavior of articular cartilage is affected by the degree of articular cartilage maturation.


Assuntos
Cartilagem Articular , Teste de Materiais , Estresse Mecânico , Envelhecimento/fisiologia , Animais , Fenômenos Biomecânicos , Cartilagem Articular/fisiologia , Força Compressiva , Suínos
13.
Mater Sci Eng C Mater Biol Appl ; 92: 407-415, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184766

RESUMO

To study the mechanical effects of defect shape on the damage evolution of knee cartilage and find the causes of fragments, so as to obtain damage evolution rules and determine the most appropriate shape used in a clinical repair. A porous viscoelasticity fiber-reinforced 2D numerical model with different micro-defect shapes was established which considered the depth-dependent Young's modulus, fiber distribution, porosity and permeability. The stress-strain relationship, interstitial hydraulic and interstitial flow velocity was obtained under rolling load. The results showed that damage developed at the bottom corner of the defect, preferentially deep within the cartilage tangential to the fibers direction, and then extended to the surface along adjacent fibers, finally forming fragments. In the early stages of damage, the shear stress and interstitial flow velocity within cartilage with a rectangular cross-sectional defect were the lowest, while interstitial hydraulic pressure was the highest, followed by 100° trapezoid and semicircle, and finally 80° trapezoid defects. In the later stage of damage, the results were very similar. The shear strain, interstitial flow velocity and interstitial hydraulic pressure decreased with increasing defect depth. Therefore, defect shape only affected damage evolution in the early stages. The fragments in cartilage were the result of the damage evolution which sizes were correlated with the initial defect depth. The damage velocity of cartilage with a rectangular section-incision was the slowest. Finally, we concluded that cylindrical incisions are optimal in clinical surgery. These results provide a theoretical basis for the clinical interpretation of pathological degeneration and repair therapy.


Assuntos
Cartilagem , Módulo de Elasticidade , Traumatismos do Joelho , Articulação do Joelho , Modelos Biológicos , Cartilagem/lesões , Cartilagem/patologia , Cartilagem/fisiopatologia , Humanos , Traumatismos do Joelho/patologia , Traumatismos do Joelho/fisiopatologia , Articulação do Joelho/patologia , Articulação do Joelho/fisiopatologia , Viscosidade
14.
J Orthop Res ; 36(5): 1415-1424, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29058779

RESUMO

Osteoporosis is a disease characterized by low bone mass and progressive destruction of bone microstructure, resulting in increasing the risk of fracture. Icariin (ICA) as a phytoestrogen shows osteogenic effects, and the mechanical stimulation has been demonstrated the improving effect on osteoporosis. The objective of this study was to investigate the effect of ICA in combination with constrained dynamic loading (CDL) stimulation on osteoporosis in ovariectomized (OVX) mice. The serum hormone levels, bone turnover markers, trabecular architecture, ulnar biomechanical properties, and the expression of osteoblast-related gene (alkaline phosphatase, ALP; osteocalcin, OCN; bone morphogenetic protein-2, BMP-2; Collagen I (α1), COL1; osteoprotegerin, OPG) and osteoclast-related genes (receptor activators of NF-κB ligand, RANKL; tartrate-resistant acid phosphatase, TRAP) were analyzed. The results showed that ICA + CDL treatment could increase the osteocalcin (20.85%), estradiol levels (20.61%) and decrease the TRAP activity (26.27%) significantly than CDL treatment. The combined treatment attenuated bone loss and biomechanical decrease more than single use of CDL treatment. ICA + CDL treatment significantly up-regulated the level of osteoblast-related gene expression and down-regulated the osteoclast-related genes expression; moreover, the combined treatment increased the ratio of OPG/RANKL significantly compared to ICA (72.83%) or CDL (65.63%) treatment alone. The present study demonstrates that icariin in combination with constrained dynamic loading treatment may have a therapeutic advantage over constrained dynamic loading treatment alone for the treatment of osteoporosis, which would provide new evidence for the clinical treatment of osteoporosis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1415-1424, 2018.


Assuntos
Flavonoides/uso terapêutico , Osteoporose/terapia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Remodelação Óssea , Colágeno Tipo I/genética , Estradiol/sangue , Feminino , Camundongos , Camundongos Endogâmicos ICR , Osteoporose/sangue , Osteoprotegerina/análise , Ovariectomia , Ligante RANK/análise
15.
J Healthc Eng ; 2017: 1308945, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29065567

RESUMO

COMSOL finite element software was used to establish a solid-liquid coupling biphasic model of articular cartilage and a microscopic model of chondrocytes, using modeling to take into account the shape and number of chondrocytes in cartilage lacuna in each layer. The effects of cyclic loading at different frequencies on the micromechanical environment of chondrocytes in different regions of the cartilage were studied. The results showed that low frequency loading can cause stress concentration of superficial chondrocytes. Moreover, along with increased frequency, the maximum value of stress response curve of chondrocytes decreased, while the minimum value increased. When the frequency was greater than 0.2 Hz, the extreme value stress of response curve tended to be constant. Cyclic loading had a large influence on the distribution of liquid pressure in chondrocytes in the middle and deep layers. The concentration of fluid pressure changed alternately from intracellular to peripheral in the middle layer. Both the range of liquid pressure in the upper chondrocytes and the maximum value of liquid pressure in the lower chondrocytes in the same lacunae varied greatly in the deep layer. At the same loading frequency, the elastic modulus of artificial cartilage had little effect on the mechanical environment of chondrocytes.


Assuntos
Cartilagem Articular/lesões , Condrócitos/fisiologia , Análise de Elementos Finitos , Modelos Biológicos , Cartilagem Articular/citologia , Força Compressiva/fisiologia , Humanos
16.
Mater Sci Eng C Mater Biol Appl ; 78: 79-87, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576051

RESUMO

Superficial lesions of cartilage are the direct indication of osteoarthritis. To investigate the mechanical mechanism of cartilage with micro-defect under external loading, a new plain strain numerical model with micro-defect was proposed and damage evolution progression in cartilage over time has been simulated, the parameter were studied including load style, velocity of load and degree of damage. The new model consists of the hierarchical structure of cartilage and depth-dependent arched fibers. The numerical results have shown that not only damage of the cartilage altered the distribution of the stress but also matrix and fiber had distinct roles in affecting cartilage damage, and damage in either matrix or fiber could promote each other. It has been found that the superficial cracks in cartilage spread preferentially along the tangent direction of the fibers. It is the arched distribution form of fibers that affects the crack spread of cartilage, which has been verified by experiment. During the process of damage evolution, its extension direction and velocity varied constantly with the damage degree. The rolling load could cause larger stress and strain than sliding load. Strain values of the matrix initially increased and then decreased gradually with the increase of velocity, and velocity had a greater effect on matrix than fibers. Damage increased steadily before reaching 50%, sharply within 50 to 85%, and smoothly and slowly after 85%. The finding of the paper may help to understand the mechanical mechanism why the cracks in cartilage spread preferentially along the tangent direction of the fibers.


Assuntos
Cartilagem Articular , Osteoartrite , Estresse Mecânico
17.
Mater Sci Eng C Mater Biol Appl ; 77: 1050-1059, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531978

RESUMO

The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions.


Assuntos
Osso Esponjoso , Força Compressiva , Módulo de Elasticidade , Modelos Biológicos , Pressão , Estresse Mecânico
18.
Mater Sci Eng C Mater Biol Appl ; 57: 371-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26354278

RESUMO

The ratcheting deformation of articular cartilage can produce due to the repeated accumulations of compressive strain in cartilage. The aim of this study was to investigate the ratcheting behavior of articular cartilage under cyclic compression. A series of uniaxial cyclic compression tests were conducted for online soaked and unsoaked cartilage samples and the effects of stress variation and stress rate on ratcheting behavior of cartilage were investigated. It is found that the ratcheting strains of online soaked and unsoaked cartilage samples increase rapidly at initial stage and then show the slower increase with cyclic compression going on. On the contrary, the ratcheting strain rate decreases quickly at first and then exhibits a relatively stable and small value. Both the ratcheting strain and ratcheting strain rate increase with stress variation increasing or with stress rate decreasing. Simultaneously, the optimized digital image correlation (DIC) technique was applied to study the ratcheting behavior and Young's modulus of different layers for cartilage under cyclic compression. It is found that the ratcheting behavior of cartilage is dependent on its depth. The ratcheting strain and its rate decrease through the depth of cartilage from surface to deep, whereas the Young's modulus increases.


Assuntos
Cartilagem Articular/citologia , Cartilagem Articular/fisiologia , Modelos Biológicos , Estimulação Física/métodos , Animais , Força Compressiva/fisiologia , Simulação por Computador , Módulo de Elasticidade/fisiologia , Técnicas In Vitro , Estresse Mecânico , Suínos , Resistência à Tração/fisiologia
19.
Cancer Biol Med ; 11(1): 34-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24738037

RESUMO

In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanoparticles, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail.

20.
Proc Inst Mech Eng H ; 228(5): 486-493, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24718863

RESUMO

The unconfined compression and tension experiments of the intervertebral disc were conducted by applying an optimized digital image correlation technique, and the internal strain distribution was analysed for the disc. It was found that the axial strain values of different positions increased obviously with the increase in loads, while inner annulus fibrosus and posterior annulus fibrosus experienced higher axial strains than the outer annulus fibrosus and anterior annulus fibrosus. Deep annulus fibrosus exhibited higher compressive and tensile axial strains than superficial annulus fibrosus for the anterior region, while there was an opposite result for the posterior region. It was noted that all samples demonstrated a nonlinear stress-strain profile in the process of deforming, and an elastic region was shown once the sample was deformed beyond its toe region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...