Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(12): 259, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038768

RESUMO

KEY MESSAGE: Seventeen PHS-QTLs and candidate genes were obtained, including eleven major loci, three under multiple environments and two with co-localization by the other mapping methods; The functions of three candidate genes were validated using mutants; nine target proteins and five networks were filtered by joint analysis of GWAS and WGCNA. Seed dormancy (SD) and pre-harvest sprouting (PHS) affect yield, as well as grain and hybrid quality in seed production. Therefore, identification of genetic and regulatory pathways underlying PHS and SD is key to gene function analysis, allelic variation mining and genetic improvement. In this study, 78,360 SNPs by SLAF-seq of 230 maize chromosome segment introgression lines (ILs), PHS under five environments were used to conduct GWAS (genome wide association study) (a threshold of 1/n), and seventeen unreported PHS QTLs were obtained, including eleven QTLs with PVE > 10% and three QTLs under multiple environments. Two QTL loci were co-located between the other two genetic mapping methods. Using differential gene expression analyses at two stages of grain development, gene functional analysis of Arabidopsis mutants, and gene functional analysis in the QTL region, seventeen PHS QTL-linked candidate genes were identified, and their five molecular regulatory networks constructed. Based on the Arabidopsis T-DNA mutations, three candidate genes were shown to regulate for SD and PHS. Meanwhile, using RNA-seq of grain development, the weighted correlation network analysis (WGCNA) was performed, deducing five regulatory pathways and target genes that regulate PHS and SD. Based on the conjoint analysis of GWAS and WGCNA, four pathways, nine target proteins and target genes were revealed, most of which regulate cell wall metabolism, cell proliferation and seed dehydration tolerance. This has important theoretical and practical significance for elucidating the genetic basis of maize PHS and SD, as well as mining of genetic resources and genetic improvement of traits.


Assuntos
Arabidopsis , Dormência de Plantas , Dormência de Plantas/genética , Zea mays/genética , Estudo de Associação Genômica Ampla , Arabidopsis/genética , Mapeamento Cromossômico
2.
Nanomaterials (Basel) ; 13(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049356

RESUMO

Silver nanopillars with strong plasmonic effects are used for localized electromagnetic field enhancement and regulation and have wide potential applications in sensing, bioimaging, and surface-enhanced spectroscopy. Normally, the controlled synthesis of silver nanopillars is mainly achieved using heterometallic nanoparticles, including Au nanobipyramids and Pd decahedra, as seeds for inducing nanostructure growth. However, the seed materials are usually doped in silver nanopillar products. Herein, the synthesis of pure silver nanopillars with hexagonal cross-sections is achieved by employing rebuildable silver nanoparticles as seeds. An environmentally friendly, stable, and reproducible synthetic route for obtaining silver nanopillars is proposed using sodium dodecyl sulfate as the surface stabilizer. Furthermore, the seed particles induce the formation of regular structures at different temperatures, and, specifically, room temperature is beneficial for the growth of nanopillars. The availability of silver nanoparticle seeds using sodium alginate as a carrier at different temperatures was verified. A reproducible method was developed to synthesize pure silver nanopillars from silver nanoparticles at room temperature, which can provide a strategy for designing plasmonic nanostructures for chemical and biological applications.

3.
Nanoscale ; 13(7): 4269-4277, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33595014

RESUMO

By virtue of its high throughput multiplex detection capability, superior read-out sensitivity, and tiny analyte consumption, an optically enhanced protein microarray assay has been developed as a promising diagnostic tool for various applications, ranging from the field of pharmacology to diagnostics. However, so far, the development of an optically enhanced protein microarray (OEPM) toward widespread commercial availability is mainly hampered by insufficient detection reproducibility. Here, we develop an OEPM platform with an order of magnitude optical enhancement induced by the interference effect. High assay reproducibility of the OEPM is achieved by optimizing the protein immobilization schemes, linking to the surface energy of the substrate, surfactant-tuned wetting ability, and the washing and drying dynamics. As a result, smearing-free and uniform spot arrays with a coefficient of variation less than 7% can be achieved. Furthermore, we demonstrate the assay performance of the OEPM by detecting five biomarkers, showing an order of magnitude higher sensitivity, many-fold higher throughput, and 10 times less analyte consumption than those of the commercial enzyme-linked immunosorbent assay kits. Our results provide new insight for improving the reproducibility of OEPMs toward practical and commercial diagnostic assays.


Assuntos
Análise Serial de Proteínas , Proteínas , Ensaio de Imunoadsorção Enzimática , Imunoensaio , Reprodutibilidade dos Testes
4.
Nanoscale ; 13(4): 2429-2435, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33459751

RESUMO

Easy-to-use and sensitive quantification of biomarkers has a great significance in disease prediction, diagnosis, and monitoring. Here, we report a biosensor for simple and sensitive biomarker detection based on the strong light scattering (brightness) of superradiative plasmonic nanoantennas. This nanoantenna is constructed using antibody-decorated gold nanoparticles (Au NPs) immobilized onto a gold mirror by the target antigen, forming a nanoparticle-on-mirror (NPOM) configuration. The NPOM produces an order of magnitude stronger light scattering in the red region compared with isolated Au NPs on the dielectric substrate, due to the strong near-field coupling of surface plasmons across the gap between the Au NPs and the gold film. The increased brightness allows one to observe the captured Au NPs with the naked eye using a dark-field optical microscope. The particle density of the Au NPs varies linearly with the concentration of the target antigen over a broad dynamic range from 10-3 to 103 ng mL-1. This dynamic range is three orders of magnitude broader than that obtained from the previous work based on a dark-field optical microscope. The limit of detection is 1 pg mL-1 (6.67 fM), which is three orders of magnitude more sensitive than that obtained in the previous work using similar conditions. The uniform spatial distribution of the Au NPs on the gold film was allowed to quantify biomarkers with a relative standard deviation as small as 1-7%. Biosensing using superradiative NPs can lower the detection limit, simplify, and speed up the detection procedure for biomarker detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Imunoensaio , Ressonância de Plasmônio de Superfície
5.
Materials (Basel) ; 13(17)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872579

RESUMO

Some special conditions are important for chemical syntheses, such as high temperature and the medium used; unfortunately, uncontrollable influences are introduced during the process, resulting in unexpectedly low repeatability. Herein, we report a facile, environmentally friendly, stable, and repeatable methodology for synthesizing silver nanoplates (SNPs) at 0 °C that overcomes these issues and dramatically increases the yield. This method mainly employs sodium dodecyl sulfate (SDS) and sodium alginate (SA) as the surface stabilizer and assistant, respectively. Consequently, we produced hexagonal nanoplates and tailed nanoplates, and the characterization showed that SA dominates the clear and regular profiles of nanoplates at 0 °C. The tailed nanoplates, over time, showed the growth of heads and the dissolving of tails, and inclined to the nanoplates without tails. The synthesis method for SNPs used in this study-0 °C without media-showed high repeatability. We confirmed that these special conditions are not required for the synthesis of silver nanostructures (SNSs). Furthermore, we constructed a new method for preparing noble metal nanostructures and proved the possibility of preparing metal nanostructures at 0 °C.

6.
Light Sci Appl ; 9: 101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566171

RESUMO

Polarization optics plays a pivotal role in diffractive, refractive, and emerging flat optics, and has been widely employed in contemporary optical industries and daily life. Advanced polarization manipulation leads to robust control of the polarization direction of light. Nevertheless, polarization control has been studied largely independent of the phase or intensity of light. Here, we propose and experimentally validate a Malus-metasurface-assisted paradigm to enable simultaneous and independent control of the intensity and phase properties of light simply by polarization modulation. The orientation degeneracy of the classical Malus's law implies a new degree of freedom and enables us to establish a one-to-many mapping strategy for designing anisotropic plasmonic nanostructures to engineer the Pancharatnam-Berry phase profile, while keeping the continuous intensity modulation unchanged. The proposed Malus metadevice can thus generate a near-field greyscale pattern, and project an independent far-field holographic image using an ultrathin and single-sized metasurface. This concept opens up distinct dimensions for conventional polarization optics, which allows one to merge the functionality of phase manipulation into an amplitude-manipulation-assisted optical component to form a multifunctional nano-optical device without increasing the complexity of the nanostructures. It can empower advanced applications in information multiplexing and encryption, anti-counterfeiting, dual-channel display for virtual/augmented reality, and many other related fields.

7.
Nano Lett ; 19(9): 6284-6291, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430168

RESUMO

The fact that metallic nanostructures are an excellent light receiver and transmitter connects the underlying principles of two widely applied optical processes: surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). A comparative study of SERS and SEF can eliminate the typical unknown quantities of the system and reveal important parameters that cannot be accessed by conventional techniques. Here, we use this simultaneous SERS and SEF technique in a monolayer MoSe2 coupled plasmonic nanocavity. After optimizing the spatial and the spectral overlaps between excitonic and plasmonic resonances, the SERS and SEF enhancement factors can exceed 107 and 6000, respectively, at the same time on the same nanocube. The comparison of the SERS and SEF enhancements allows the estimation of the ultrafast total decay rate of the bright exciton in monolayer MoSe2 in the nanocavity down to tens of femtoseconds, which is otherwise hard to realize using time-resolved techniques.

8.
ACS Nano ; 12(10): 10393-10402, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30222317

RESUMO

The interaction between plasmons in metal nanostructures and excitons in layered materials attracts recent interests due to its fascinating properties inherited from the two constituents, e.g., the high tunability on its spectral or spatial properties from the plasmonic component, and the large optical nonlinearity or light emitting properties from the excitonic counterpart. Here, we demonstrate light-emitting plexcitons from the coupling between the neutral excitons in monolayer WSe2 and highly confined nanocavity plasmons in the nanocube-over-mirror system. We observe, simultaneously, an anticrossing dispersion curve of the hybrid system in the dark-field scattering spectrum and a 1700 times enhancement in the photoluminescence. We attribute the large photoluminescence enhancement to the increased local density of states by both the plasmonic and excitonic constituents in the intermediate coupling regime. In addition, increasing the confinement of the hybrid systems is achieved by shrinking down the size of the hot spot within the gap between the nanocube and the metal film. Numerical calculations reproduce the experimental observations and provide the effective number of excitons taking part in the interaction. This highly compact system provides a room temperature testing platform for quantum cavity electromagnetics at the deep subwavelength scale.

9.
Nanoscale ; 7(21): 9563-9, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25947616

RESUMO

A novel, mild and effective method was designed for grafting of high-quality organic monolayers on a silicon surface to catalyze nanoparticles' growth. By using a white-light source, 3-mercaptopropionic acid (3-MPA) molecules were attached to hydrogen-terminated Si(111) surfaces at room temperature. The attached monolayers were characterized using X-ray photoelectron spectroscopy to provide detailed information. The in situ growth of Au nanoparticles (AuNPs) with dimensions below 20 nm was catalyzed on a silicon surface with highly uniform and compact structure morphology. The AuNPs can grow selectively in a certain region on a patterned Si-Si3N4 chip. p-Nitrothiophenol (p-NTP) was used as the probe to evaluate the SERS enhancement of the highly uniform and compact AuNP-Si substrate. In order to better understand the white light initiation of the addition reaction of 3-MPA on the Si(111)-H surface, the mechanism was elucidated by density functional theoretical (DFT) calculations, which indicated that the formation of the Si-O bond occurred at the PEC of the first singlet excited state (S1) with a very low activation barrier about 30% of the ground state (S0) value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...