Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 7843, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798418

RESUMO

The suitable band structure is vital for perovskite solar cells, which greatly affect the high photoelectric conversion efficiency. Cation substitution is an effective approach to tune the electric structure, carrier concentration, and optical absorption of hybrid lead iodine perovskites. In this work, the electronic structures and optical properties of cation (Bi, Sn, and TI) doped tetragonal formamidinium lead iodine CH(NH2)2PbI3 (FAPbI3) are studied by first-principles calculations. For comparison, the cation-doped tetragonal methylammonium lead iodine CH3NH3PbI3 (MAPbI3) are also considered. The calculated formation energies reveal that the Sn atom is easier to dope in the tetragonal MAPbI3/FAPbI3 structure due to the small formation energy of about 0.3 eV. Besides, the band gap of Sn-doped MAPbI3/FAPbI3 is 1.30/1.40 eV, which is considerably smaller than the un-doped tetragonal MAPbI3/FAPbI3. More importantly, compare with the un-doped tetragonal MAPbI3/FAPbI3, the Sn-doped MAPbI3 and FAPbI3 have the larger optical absorption coefficient and theoretical maximum efficiency, especially for Sn-doped FAPbI3. The lower formation energy, suitable band gap and outstanding optical absorption of the Sn-doped FAPbI3 make it promising candidates for high-efficient perovskite cells.

2.
Sci Rep ; 6: 32764, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585548

RESUMO

The electronic structures and photocatalytic properties of bismuth oxyhalide bilayers (BiOX1/BiOX2, X1 and X2 are Cl, Br, I) are studied by density functional theory. Briefly, their compositionally tunable bandgaps range from 1.85 to 3.41 eV, suitable for sun-light absorption, and all bilayers have band-alignments good for photocatalytic water-splitting. Among them, heterogeneous BiOBr/BiOI bilayer is the best as it has the smallest bandgap. More importantly, photo-excitation of BiOBr/BiOI leads to electron supply to the conduction band minimum with localized states belonging mainly to bismuth of BiOBr where the H(+)/H2 half-reaction of water-splitting can be sustained. Meanwhile, holes generated by such photo-excitation are mainly derived from the iodine states of BiOI in the valence band maximum; thus, the O2/H2O half-reaction of water splitting is facilitated on BiOI. Detailed band-structure analysis also indicates that this intriguing spatial separation of photo-generated electron-hole pairs and the two half-reactions of water splitting are good for a wide photo-excitation spectrum from 2-5 eV; as such, BiOBr/BiOI bilayer can be an efficient photocatalyst for water-splitting, particularly with further optimization of its optical absorptivity.

3.
Sci Rep ; 6: 22408, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935775

RESUMO

Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence.

4.
Sci Rep ; 4: 7007, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25387832

RESUMO

Three-dimensional (3D) hybrid layered materials receive a lot of attention because of their outstanding intrinsic properties and wide applications. In this work, the stability and electronic structure of three-dimensional graphene-MoS2 (3 DGM) hybrid structures are examined based on first-principle calculations. The results reveal that the 3 DGMs can easily self-assembled by graphene nanosheet and zigzag MoS2 nanoribbons, and they are thermodynamically stable at room temperature. Interestingly, the electronic structures of 3 DGM are greatly related to the configuration of joint zone. The 3 DGM with odd-layer thickness MoS2 nanoribbon is semiconductor with a small band gap of 0.01-0.25 eV, while the one with even-layer thickness MoS2 nanoribbon exhibits metallic feature. More importantly, the 3 DGM with zigzag MoS2 nanoribbon not only own the large surface area and effectively avoid the aggregation between the different nanoribbons, but also can remarkably enhance Li adsorption interaction, thus the 3 DGM have the great potential as high performance lithium ion battery cathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...