Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 263(Pt 1): 120029, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299446

RESUMO

The understanding of activated sludge microbial status and roles is imperative for improving and enhancing the performance of wastewater treatment plants (WWTPs). In this study, we conducted a deep analysis of activated sludge microbial communities across five compartments (inflow, effluent, and aerobic, anoxic, anaerobic tanks) over temporal scales, employing high-throughput sequencing of 16S rRNA amplicons and metagenome data. Clearly discernible seasonal patterns, exhibiting cyclic variations, were observed in microbial diversity, assembly, co-occurrence network, and metabolic functions. Notably, summer samples exhibited higher α-diversity and were distinctly separated from winter samples. Our analysis revealed that microbial community assembly is influenced by both stochastic processes (66%) and deterministic processes (34%), with winter samples demonstrating more random assembly compared to summer. Co-occurrence patterns were predominantly mutualistic, with over 96% positive correlations, and summer networks were more organized than those in winter. These variations were significantly correlated with temperature, total phosphorus and sludge volume index. However, no significant differences were found among microbial community across five compartments in terms of ß diversity. A core community of keystone taxa was identified, playing key roles in eight nitrogen and eleven phosphorus cycling pathways. Understanding the assembly mechanisms, co-occurrence patterns, and functional roles of microbial communities is essential for the design and optimization of biotechnological treatment processes in WWTPs.

2.
Bioresour Technol ; 402: 130831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734262

RESUMO

Mercury (Hg), particularly organic mercury, poses a global concern due to its pronounced toxicity and bioaccumulation. Bioremediation of organic mercury in high-salt wastewater faces challenges due to the growth limitations imposed by elevated Cl- and Na+ concentrations on microorganisms. In this study, an isolated marine bacterium Alteromonas macleodii KD01 was demonstrated to degrade methylmercury (MeHg) efficiently in seawater and then was applied to degrade organic mercury (MeHg, ethylmercury, and thimerosal) in simulated high-salt wastewater. Results showed that A. macleodii KD01 can rapidly degrade organic mercury (within 20 min) even at high concentrations (>10 ng/mL), volatilizing a portion of Hg from the wastewater. Further analysis revealed an increased transcription of organomercury lyase (merB) with rising organic mercury concentrations during the exposure process, suggesting the involvement of mer operon (merA and merB). These findings highlight A. macleodii KD01 as a promising candidate for addressing organic mercury pollution in high-salt wastewater.


Assuntos
Alteromonas , Biodegradação Ambiental , Mercúrio , Mercúrio/metabolismo , Alteromonas/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Água do Mar/microbiologia , Aerobiose , Compostos de Metilmercúrio/metabolismo
3.
Chemosphere ; 324: 138291, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36870614

RESUMO

Methylmercury (MeHg), derived from industrial processes and microbial methylation, is still a worldwide environmental concern. A rapid and efficient strategy is necessary for MeHg degradation in waste and environmental waters. Here, we provide a new method with ligand-enhanced Fenton-like reaction to rapidly degrade MeHg under neutral pH. Three common chelating ligands were selected (nitriloacetic acid (NTA), citrate, and ethylenediaminetetraacetic disodium (EDTA)) to promote the Fenton-like reaction and degradation of MeHg. Results showed that MeHg can be rapidly degraded, with the following efficiency sequence: EDTA > NTA > citrate. Scavenger addition demonstrated that hydroxyl radical (▪OH), superoxide radical (O2▪-), and ferryl (FeⅣO2+) were involved in MeHg degradation, and their relative contributions highly depended on ligand type. Degradation product and total Hg analysis suggested that Hg(Ⅱ) and Hg0 were generated with the demethylation of MeHg. Further, environmental factors, including initial pH, organic complexation (natural organic matter and cysteine), and inorganic ions (chloride and bicarbonate) on MeHg degradation, were investigated in NTA-enhanced system. Finally, rapid MeHg degradation was validated for MeHg-spiked waste and environmental waters. This study provided a simple and efficient strategy for MeHg remediation in contaminated waters, which is also helpful for understanding its degradation in the natural environment.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Compostos de Metilmercúrio/metabolismo , Ligantes , Ácido Edético , Mercúrio/metabolismo , Concentração de Íons de Hidrogênio , Citratos
4.
J Hazard Mater ; 423(Pt A): 127002, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34474359

RESUMO

Straw sizes were found to affect the methylmercury (MeHg) accumulation in rice grains induced by straw incorporation. The mechanism behind, however, still remains unclear. Here, we incorporated rice straw in different sizes (powder, 2 cm and 5 cm) into a Hg-contaminated paddy soil. Our results showed that straw sizes regulated the release of different fractions of organic matter (OM) in straw residues and further Hg methylation in paddy soil. The easily degradable OM (EDOM) was a key driving factor that facilitated net Hg methylation, though it only occupied a small fraction (1.12-3.12%) of the soil OM. Powdered straw reduced the duration of net Hg methylation by 74.39% compared to 5 cm straw, resulting in a strong and rapid net Hg methylation in paddy soil before the rice flowering. After the release of EDOM, the humified OM dominated in paddy soil and bound to MeHg, leading to less MeHg being transported to rice grains during the grain filling. Powdered straw decreased MeHg accumulation by 25.32% in the mature rice grains compared with 5 cm straw. Our study suggests that straw powdering before incorporation provides a feasible pathway for reducing MeHg accumulation in rice grains induced by straw incorporation.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes do Solo , Mercúrio/análise , Metilação , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA