Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2321825121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498716

RESUMO

Label-free optical imaging of single-nanometer-scale matter is extremely important for a variety of biomedical, physical, and chemical investigations. One central challenge is that the background intensity is much stronger than the intensity of the scattering light from single nano-objects. Here, we propose an optical module comprising cascaded momentum-space polarization filters that can perform vector field modulation to block most of the background field and result in an almost black background; in contrast, only a small proportion of the scattering field is blocked, leading to obvious imaging contrast enhancement. This module can be installed in various optical microscopies to realize a black-field microscopy. Various single nano-objects with dimensions smaller than 20 nm appear distinctly in the black-field images. The chemical reactions occurring on single nanocrystals with edge lengths of approximately 10 nm are in situ real-time monitored by using the black-field microscopy. This label-free black-field microscopy is highly promising for a wide range of future multidisciplinary science applications.

2.
J Environ Sci (China) ; 138: 167-178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135385

RESUMO

Under high relative humidity (RH) conditions, the release of volatile components (such as acetate) has a significant impact on the aerosol hygroscopicity. In this work, one surface plasmon resonance microscopy (SPRM) measurement system was introduced to determine the hygroscopic growth factors (GFs) of three acetate aerosols separately or mixed with glucose at different RHs. For Ca(CH3COO)2 or Mg(CH3COO)2 aerosols, the hygroscopic growth trend of each time was lower than that of the previous time in three cyclic humidification from 70% RH to 90% RH, which may be due to the volatility of acetic acid leading to the formation of insoluble hydroxide (Ca(OH)2 or Mg(OH)2) under high RH conditions. Then the third calculated GF (using the Zdanovskii-Stokes-Robinson method) for Ca(CH3COO)2 or Mg(CH3COO)2 in bicomponent aerosols with 1:1 mass ratio were 3.20% or 5.33% lower than that of the first calculated GF at 90% RH. The calculated results also showed that the hygroscopicity change of bicomponent aerosol was negatively correlated with glucose content, especially when the mass ratio of Mg(CH3COO)2 to glucose was 1:2, the GF at 90% RH only decreased by 4.67% after three cyclic humidification. Inductively coupled plasma atomic emission spectrum (ICP-AES) based measurements also indicated that the changes of Mg2+concentration in bicomponent was lower than that of the single-component. The results of this study reveal thatduring the efflorescence transitions of atmospheric nanoparticles, the organic acids diffusion rate may be inhibited by the coating effect of neutral organic components, and the particles aging cycle will be prolonged.


Assuntos
Microscopia , Ressonância de Plasmônio de Superfície , Molhabilidade , Aerossóis , Acetatos , Glucose
3.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862523

RESUMO

We report the design and realization of the back focal plane (BFP) imaging for the light emission from a tunnel junction in a low-temperature ultrahigh-vacuum (UHV) scanning tunneling microscope (STM). To achieve the BFP imaging in a UHV environment, a compact "all-in-one" sample holder is designed and fabricated, which allows us to integrate the sample substrate with the photon collection units that include a hemisphere solid immersion lens and an aspherical collecting lens. Such a specially designed holder enables the characterization of light emission both within and beyond the critical angle and also facilitates the optical alignment inside a UHV chamber. To test the performance of the BFP imaging system, we first measure the photoluminescence from dye-doped polystyrene beads on a thin Ag film. A double-ring pattern is observed in the BFP image, arising from two kinds of emission channels: strong surface plasmon coupled emissions around the surface plasmon resonance angle and weak transmitted fluorescence maximized at the critical angle, respectively. Such an observation also helps to determine the emission angle for each image pixel in the BFP image and, more importantly, proves the feasibility of our BFP imaging system. Furthermore, as a proof-of-principle experiment, electrically driven plasmon emissions are used to demonstrate the capability of the constructed BFP imaging system for STM induced electroluminescence measurements. A single-ring pattern is obtained in the BFP image, which reveals the generation and detection of the leakage radiation from the surface plasmon propagating on the Ag surface. Further analyses of the BFP image provide valuable information on the emission angle of the leakage radiation, the orientation of the radiating dipole, and the plasmon wavevector. The UHV-BFP imaging technique demonstrated here opens new routes for future studies on the angular distributed emission and dipole orientation of individual quantum emitters in UHV.

4.
Phys Chem Chem Phys ; 25(11): 7711-7718, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36876861

RESUMO

Optical microscopy with a diffraction limit cannot distinguish nanowires with sectional dimensions close to or smaller than the optical resolution. Here, we propose a scheme to retrieve the subwavelength cross-section of nanowires based on the asymmetric excitation of Bloch surface waves (BSWs). Leakage radiation microscopy is used to observe the propagation of BSWs at the surface and to collect far-field scattering patterns in the substrate. A model of linear dipoles induced by tilted incident light is built to explain the directional imbalance of BSWs. It shows the potential capability in precisely resolving the subwavelength cross-section of nanowires from far-field scattering without the need for complex algorithms. Through comparing the nanowire widths measured by this method and those measured by scanning electron microscopy (SEM), the transverse resolutions of the widths of two series of nanowires with heights 55 nm and 80 nm are about 4.38 nm and 6.83 nm. All results in this work demonstrate that the new non-resonant far-field optical technology has potential application in metrology measurements with high precision by taking care of the inverse process of light-matter interaction.

5.
Sci Total Environ ; 867: 161588, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642280

RESUMO

The hygroscopicities of calcium and magnesium salts strongly affect the environment and climate, but the aging products of these salts at high relative humidities (RHs) are still poorly understood. In this study, surface plasmon resonance microscopy (SPRM) was used to determine the hygroscopic growth factors (GFs) of Ca(NO3)2 and Mg(NO3)2 separately or mixed with galactose at different mass ratios at different RHs before and after aging. For all particles, the measured GFs showed no indication of deliquescence across the range of RHs tested, and overall hygroscopicity was clearly lower after than before aging. The Ca(NO3)2 and Mg(NO3)2 GFs at 90 % RH were 1.80 and 1.66, respectively, before aging and 1.33 and 1.42, respectively, after 4 h aging, meaning aging decreased the GFs by 26.11 % and 14.46 %, respectively. Aging decreased the hygroscopicity because insoluble or sparingly soluble substances (CaSO3, CaSO4, MgSO3) formed and strongly changed the overall hygroscopicity. For bicomponent aerosols with different mass ratios, the GFs (calculated using the Zdanovskii-Stokes-Robinson method) of the other components except galactose at 90 % RH after 1 h aging were all lower, respectively, than the measured GFs of pure Ca(NO3)2 and Mg(NO3)2 after aging for 1 h, especially with the mass ratio of 1:2, their GFs have decreased by 14.63 % and 7.50 %, respectively. Subsequently, Ion chromatograms indicated that the peak area ratio of SO42- to NO3- ratios were higher for the aged bicomponent particles than aged single-component particles, possibly because adding galactose improved the gas-liquid state stability during drying after the aging process and therefore promoted nitrate consumption and sulfate formation. The results indicated that organic components may play important roles in heterogeneous reactions between trace gases and multicomponent aerosols and should be considered in evaluating the impacts on submicron aerosol composition of high atmospheric SO2 concentrations at high humidities.

6.
Nat Commun ; 13(1): 7944, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572704

RESUMO

Analog spatial differentiation is used to realize edge-based enhancement, which plays an important role in data compression, microscopy, and computer vision applications. Here, a planar chip made from dielectric multilayers is proposed to operate as both first- and second-order spatial differentiator without any need to change the structural parameters. Third- and fourth-order differentiations that have never been realized before, are also experimentally demonstrated with this chip. A theoretical analysis is proposed to explain the experimental results, which furtherly reveals that more differentiations can be achieved. Taking advantages of its differentiation capability, when this chip is incorporated into conventional imaging systems as a substrate, it enhances the edges of features in optical amplitude and phase images, thus expanding the functions of standard microscopes. This planar chip offers the advantages of a thin form factor and a multifunctional wave-based analogue computing ability, which will bring opportunities in optical imaging and computing.

7.
Opt Lett ; 47(17): 4303-4306, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048639

RESUMO

Conventional total internal reflection fluorescence (TIRF) microscopy requires either an oil-immersed objective with high numerical aperture or a bulky prism with high refractive index to generate the evanescent waves that work as the illumination source for fluorophores. Precise alignment of the optical path is necessary for optimizing the imaging performance of TIRF microscopy, which increases the operation complexity. In this Letter, a planar photonic chip composed of a dielectric multilayer and a scattering layer is proposed to replace the TIRF objective or the prism. The uniform evanescent waves can be excited under uncollimated incidence through this chip, which simplifies the alignment of the optical configurations and provides shadowless illumination. Due to the separation of the illumination and detection light paths, TIRF microscopy can have a large field-of-view (FOV).


Assuntos
Iluminação , Refratometria , Microscopia de Fluorescência/métodos , Óptica e Fotônica , Fótons
8.
Nat Commun ; 12(1): 6835, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824261

RESUMO

A limitation of standard brightfield microscopy is its low contrast images, especially for thin specimens of weak absorption, and biological species with refractive indices very close in value to that of their surroundings. We demonstrate, using a planar photonic chip with tailored angular transmission as the sample substrate, a standard brightfield microscopy can provide both darkfield and total internal reflection (TIR) microscopy images with one experimental configuration. The image contrast is enhanced without altering the specimens and the microscope configurations. This planar chip consists of several multilayer sections with designed photonic band gaps and a central region with dielectric nanoparticles, which does not require top-down nanofabrication and can be fabricated in a larger scale. The photonic chip eliminates the need for a bulky condenser or special objective to realize darkfield or TIR illumination. Thus, it can work as a miniaturized high-contrast-imaging device for the developments of versatile and compact microscopes.


Assuntos
Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Desenho de Equipamento , Microscopia , Nanopartículas , Fótons , Ressonância de Plasmônio de Superfície
9.
J Opt Soc Am B ; 38(5): 1579-1585, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34385758

RESUMO

The guided-modes of Bloch surface waves, such as the transverse electric modes (TE00 and TE01 modes), can simultaneously exist in a low-refractive-index ridge waveguide with subwavelength thickness that are deposited on an all dielectric one-dimension photonic crystal. By using the finite difference frequency domain method, coupled mode theory and finite-difference time-domain method, the conversion between the guided-modes has been investigated. This conversion can be realized in a broadband wavelength with surface pattern of this low-index ridge. This conversion is useful for developing lab-on-a-chip photonic devices, such as a mode converter that can maintain the output mode purity over 90% with working wavelength ranging from 590 to 680 nm, and a power splitter that can maintain the splitting ratio over 8:2 with wavelength ranging from 530 to 710 nm.

10.
J Opt ; 23(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33936580

RESUMO

The coupling of fluorescence with surface electromagnetic modes, such as surface plasmons on thin metal films or Bloch surface waves (BSW) on truncated one-dimensional photonic crystals (1DPC), are presently utilized for many fluorescence-based applications. In addition to the surface wave, 1DPCs also support other electromagnetic modes that are confined within the 1DPC structure. These internal modes (IMs) have not received much attention for fluorescence coupling due to lack of spatial overlap of their electric fields with the surface bound fluorophores. However, our recent studies have indicated that the fluorescence coupling with IMs occurs quite efficiently. This observed internal mode-coupled emission (IMCE) is (similar to BSW-coupled emission) indeed wavelength dependent, directional and S-polarized. In this paper, we have carried out back-focal plane (BFP) imaging to reveal that the IMs of 1DPCs can couple with surface bound excited dye molecules, with or without a BSW mode presence. Depending on the emission wavelength, the coupling is observed with BSW and IMs or only IMs of the 1DPC structure. The experimental results are well matching with numerical simulations. The occurrence of IMCE regardless of the availability of BSWs removes the dependence on just the surface mode for obtaining coupled emission from 1DPCs. The observation of IMCE is expected to widen the scope of 1DPCs for surface-based fluorescence sensing and assays.

11.
Nanophotonics ; 10(3): 1099-1106, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35330809

RESUMO

When an ultrathin silver nanowire with a diameter less than 100 nm is placed on a photonic band gap structure, surface plasmons can be excited and propagate along two side-walls of the silver nanowire. Although the diameter of the silver nanowire is far below the diffraction limit, two bright lines can be clearly observed at the image plane by a standard wide-field optical microscope. Simulations suggest that the two bright lines in the far-field are caused by the unique phase distribution of plasmons on the two side-walls of the silver nanowire. Combining with the sensing ability of surface plasmons to its environment, the configuration reported in this work is capable of functioning as a sensing platform to monitor environmental changes in the near-field region of this ultrathin nanowire.

12.
Nano Lett ; 20(11): 7956-7963, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33172279

RESUMO

Monolayer transition metal dichalcogenides possess considerable second-order nonlinear coefficients but a limited efficiency of frequency conversion due to the short interaction length with light under the typical direct illumination. Here, we demonstrate an efficient frequency mixing of the guided surface waves on a monolayer tungsten disulfide (WS2) by simultaneously lifting the temporal and spatial overlap of the guided wave and the nonlinear crystal. Three orders-of-magnitude enhancement of the conversion efficiency was achieved in the counter-propagating excitation configuration. Also, the frequency-mixing signals are highly collimated, with the emission direction and polarization controlled, respectively, by the pump frequencies and the rotation angle of WS2 relative to the propagation direction of the guided waves. These results indicate that the rules of nonlinear frequency conversion are applicable even when the crystal is scaled down to the ultimate single-layer limit. This study provides a versatile platform to enhance the nonlinear optical response of 2D materials and favor the scalable generation of a coherent light source and entangled photon pairs.

13.
Anal Chem ; 92(16): 11062-11071, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32639743

RESUMO

Aerosol particle hygroscopicity is an important factor in visibility reduction, cloud formation, radiation forcing, and the global climate. The high number concentration of nanoparticles (defined as particles with diameters below 100 nm) means that their hygroscopic growth abilities and potential contributions to the climate and environment are significant. Therefore, a rapid and accurate in situ analysis method for single nanoparticle hygroscopic growth in an atmospheric environment is important to characterize the effects of the particle's physical and chemical properties in this process. In this work, surface plasmon resonance microscopy with azimuthal rotation illumination (SPRM-ARI) is used to observe the hygroscopic growth and water content of single nanoparticles in situ. The hygroscopic growth results of a single-component nanoparticle are well matched with the extended aerosol inorganic model (E-AIM) results, and the proposed method remains reliable even when the relative humidity (RH) exceeds 90%. For a bicomponent nanoparticle (with NaCl as the primary content), the presence of a component without deliquescence phase transitions under increasing humidity conditions causes the measured data to differ from both the Zdanovskii-Stokes-Robinson (ZSR) model and E-AIM predictions in the low RH range. However, because of their complete liquefaction, the growth factor (GF) variation of the bicomponent nanoparticle is close to the model predictions in the high RH range. Finally, based on the positive correlation between particle volume and the gray intensity of SPRM-ARI, GF values can be obtained from the cube root of the gray intensity and the actual water content of single nanoparticles can then be derived.

14.
ACS Nano ; 14(7): 9136-9144, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32649174

RESUMO

The growth in aerosol particles caused by water uptake during increasing ambient relative humidity alters the physical and chemical properties of aerosols, which then affects public health, atmospheric chemistry, and the Earth's climate. The temporal resolution and sensitivity of current techniques are not sufficient to measure the growth dynamics of single aerosol nanoparticles. Additionally, the specific time required for phase transition from solid to aqueous has not been measured. Here, we describe a label-free photonic microscope that uses the Bloch surface waves as the illumination source for imaging and sensing to provide real-time measurements of the hygroscopic growth dynamics of a single aerosol (diameter <100 nm) containing the main components of air pollution. This specific time can be measured for both pure and mixed aerosols, showing that organics will delay the phase transition. This photonic microscope can be extended to investigate physicochemical reactions of various aerosols, and then knowing this specific time will be favorable for understanding the reaction kinetics among single aerosols and the surrounding medium.

15.
Nanoscale ; 12(3): 1688-1696, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31894803

RESUMO

Metallic particles are promising for applications in various areas, including optical sensing, imaging and electric field enhancement-induced optical and thermal effects. The ability to trap or transport these particles stably will be important in these applications. However, while traditional optical tweezers can trap metallic Rayleigh particles easily, it is difficult to trap metallic mesoscopic/Mie particles because of the strong scattering forces that come from the far-field trapping laser beam. Here we demonstrate that metallic particles can be trapped stably using focused Bloch surface waves that propagate in the near-field region of a dielectric multilayer structure with a photonic band gap. Focused Bloch surface waves can be excited efficiently using an annular beam with azimuthal polarization and a high-numerical-aperture objective. Numerical simulations were performed to calculate the optical forces loaded on a gold particle by focused Bloch surface waves and the results were consistent with those of the experimental observations.

16.
Ann Phys ; 532(4)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34113044

RESUMO

Near-field optical trapping can be realized with focused evanescent waves that are excited at the water-glass interface due to the total internal reflection, or with focused plasmonic waves excited on the water-gold interface. Herein, the performance of these two kinds of near-field optical trapping techniques is compared using the same optical microscope configuration. Experimental results show that only a single-micron polystyrene bead can be trapped by the focused evanescent waves, whereas many beads are simultaneously attracted to the center of the excited region by focused plasmonic waves. This difference in trapping behavior is analyzed from the electric field intensity distributions of these two kinds of focused surface waves and the difference in trapping behavior is attributed to photothermal effects due to the light absorption by the gold film.

17.
Phys Rev Appl ; 13(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34113692

RESUMO

Dielectric multilayer photonic-band-gap structures, called one-dimensional photonic crystals (1DPCs), have drawn considerable attention in the fields of physics, chemistry, and biophotonics. Here, experimental results verify the feasibility of a 1DPC working as a substrate for switchable manipulations of colloidal microparticles. The optically induced thermal convective force on a 1DPC can assemble colloidal particles that are dispersed in a water solution, while the photonic scattering force on the same 1DPC caused by propagating evanescent waves can guide these particles. Additionally, in the 1DPC, one internal mode can be excited that has seldom been noticed previously. This mode shows an ability to assemble particles over large areas even when the incident power is low. The assembly and guidance of colloidal particles on the 1DPC are switchable just through tuning the polarization and angle of the incident laser beam. Numerical simulations are carried out, which are consistent with these experimental observations.

18.
J Phys Chem C Nanomater Interfaces ; 124(41): 22743-22752, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34306293

RESUMO

Multilayer structures with two dielectrics having different optical constants and no structural features in the x-y plane can display photonic band gaps (PBGs) and are called one-dimensional photonic crystals (1DPCs). If the top layer thickness is carefully selected, the electromagnetic energy can be trapped at the top surface. These highly enhanced fields are called Bloch surface waves (BSWs). The BSW resonance angles are sensitive to the dielectric constant above the top dielectric layer. As a result, BSW structures have been used for surface plasmon resonance-like measurements without the use of a metal film. However, the emphasis on surface-localized BSWs has resulted in limited interest in fluorophore interactions with other optical modes of 1DPCs or Bragg gratings without the different thickness top layer. Herein, three different fluorescent probes were used to cover the short, center, and long wavelengths of the PBG. We demonstrate efficient coupling of fluorophores to both the BSW and internal modes (IMs) of a 1DPC. Coupling to the IM is expected to be low because of the micron-scale distances between the fluorophores and IM, which exists inside the Bragg gratings. At different wavelengths or observation angles, the IM-coupled emission (IMCE) can occur with the first three modes of the multilayer. This coupling is not dependent on a BSW mode. IMCE was also observed for a monolayer of fluorophore-labeled protein. IMCE enables sensitive detection of surface-bound fluorophores. Applications are anticipated in high sensitivity detection and super-resolution imaging.

19.
J Phys Chem C Nanomater Interfaces ; 123(2): 1413-1420, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31681454

RESUMO

Metal nanostructures (such as plasmonic antennas) have been widely demonstrated to be excellent devices for beaming and sorting the fluorescence emission. These effects rely on the constructive scattering or diffraction from different elements (such as metal corrugations or nanorings) of the nanostructures. However, subwavelength-size nanoholes, without nearby nanoscale features, results in an angularly dispersed emission from the distal surface. Herein, we demonstrate for the first time the emission redirection capabilities of a single isolated nanoaperture milled in a thick silver film deposited on a dielectric multilayer. Specifically, we show that a dye dissolved in ethanol filling in the nanoaperture can couple to Tamm Plasmon Polariton (TPP) modes of the structure. Due to the small in-plane wavevectors of the TPPs, the fluorescence from Tamm-coupled dyes within the nanoaperture is emitted normally to the sample surface, with a minimum angular width of about 12.54°. This kind of fluorescence manipulation has proven to be effective with various nanoaperture shapes, such as circles, squares, and triangles. Our work is also the first experimental demonstration of lateral coupling of fluorophores with TPPs in nanoholes, with potential applications in bioanalysis and biosciences.

20.
Nat Commun ; 10(1): 2093, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048682

RESUMO

The original version of the Article contained an error in Figure 2 in which the TEM images in Fig. 2b and d were incorrect. Additionally, the seventh sentence of the 'Mechanism for the dissymmetry enhancement of SCL field' section of the Methods originally contained a mistake in the first equation. This has been corrected in both the PDF and HTML versions of the Article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...