Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.685
Filtrar
1.
Materials (Basel) ; 17(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930406

RESUMO

Grain growth for various texture components in silicon steel was investigated via experiments and modeling. It was found that the clustered spatial arrangement of grains with specific orientations significantly altered the local environment for grain growth and consequently resulted in texture-differentiated grain size distribution (GSD) evolution. A novel local-field model was proposed to describe grain growth driven by continuous changing orientation and size distribution of adjacent grains. The modelling results show that the texture-differentiated grain growth in microstructure with grain clusters can produce a GSD with increased proportion in small-sized range and large-sized range by more than two-times, accompanied with an evident change in area fractions of various texture components. The effect of clustered spatial arrangement on grain growth can be precisely predicted, which is valuable to design and control the texture-differentiated GSD as well as the global GSD.

2.
Anal Chim Acta ; 1315: 342822, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879216

RESUMO

In this study, a novel electrochemiluminescence (ECL) biosensor was developed to detect microRNA-21 (miRNA-21) with high sensitivity by leveraging the combined mechanisms of resonance energy transfer (RET) and surface plasmon coupling (SPC). Initially, the glassy carbon electrode (GCE) were coated with Cu-Zn-In-S quantum dots (CZIS QDs), known for their defect-related emission suitable for ECL sensing. Subsequently, a hairpin DNA H3 with gold nanoparticles (Au NPs) attached at the end was modified over the surface of the quantum dots. The Au NPs could effectively quench the ECL signals of CZIS QDs via RET. Further, a significant amount of report DNA was generated through the action of a 3D DNA walker. When the report DNA opened H3-Au NPs, the hairpin structure experienced a conformational change to a linear shape, increasing the gap between the CZIS QDs and the Au NPs. Consequently, the localized surface plasmon resonance ECL (LSPR-ECL) effect replaced ECL resonance energy transfer (ECL-RET). Moreover, the report DNA was released following the addition of H4-Au NPs, resulting in the formation of Au dimers and a surface plasma-coupled ECL (SPC-ECL) effect that enhanced the ECL intensity to 6.97-fold. The integration of new ECL-RET and SPC-ECL biosensor accurately quantified miRNA-21 concentrations from 10-8 M to 10-16 M with a limit of detection (LOD) of 0.08 fM, as well as successfully applied to validate human serum samples.


Assuntos
Técnicas Biossensoriais , DNA , Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Pontos Quânticos , Ressonância de Plasmônio de Superfície , MicroRNAs/análise , MicroRNAs/sangue , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , DNA/química , Pontos Quânticos/química , Ressonância de Plasmônio de Superfície/métodos , Medições Luminescentes/métodos , Ouro/química , Limite de Detecção , Transferência de Energia , Nanopartículas Metálicas/química
3.
J Sci Food Agric ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922891

RESUMO

BACKGROUND: Saccharomyces cerevisiae CECA was a potential indigenous Chinese wine yeast that can produce aroma and flavor in Cabernet Sauvignon wines. High-throughput sequencing combined with metabolite analysis was applied to analyze the effects of CECA inoculation on the native microbial community interaction and metabolism during Cabernet Sauvignon wine fermentation. RESULTS: Fermentations were performed with three different inoculant strategies: spontaneous fermentation without inoculation, inoculation with CECA after grape must sterilization, and direct inoculation of CECA. Results showed that the diversity of bacteria (P = 0.033) is more sensitive to CECA inoculation than fungi (P = 0.563). In addition, CECA inoculation altered the species composition of core microorganisms (relative abundance >1%) and the keystone species (accounting for the top 1% of the most important interactions), as well as of the biomarkers (linear discriminant analysis > 3.0, P < 0.05). Furthermore, the inoculation could change the cluster of metabolites, and these differential metabolite sets were correlated with four fungal taxa of Issatchenkia, Issatchenkia orientalis, Saccharomycetales, Saccharomycetes and two bacterial taxa of Pantoea, Tatumella ptyseos, were significantly correlated. Inoculated fermentation also altered the correlation between dominant microorganisms and aroma compounds, giving Cabernet Sauvignon wines more herbal, floral, fruity, and cheesy aromas. CONCLUSION: Saccharomyces cerevisiae CECA and dimethyl dicarbonate (DMDC) inhibition treatments significantly altered the microbial community structure of Cabernet Sauvignon wines, which in turn affected the microbial-metabolite correlation. These findings will help winemakers to control the microbial dynamics and functions during wine fermentation, and be more widely used in regional typical wine fermentations. © 2024 Society of Chemical Industry.

4.
Adv Mater ; : e2404665, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923612

RESUMO

Double-atom catalysts (DACs) with asymmetric coordination are crucial for enhancing the benefits of electrochemical carbon dioxide reduction and advancing sustainable development, however, the rational design of DACs is still challenging. Herein, we synthesize atomically dispersed catalysts with novel sulfur-bridged Cu-S-Ni sites (named Cu-S-Ni/SNC), utilizing biomass wool keratin as precursor. The plentiful disulfide bonds in wool keratin overcome the limitations of traditional gas-phase S ligand etching process and enable the one-step formation of S-bridged sites. X-ray absorption spectroscopy (XAS) confirms the existence of bimetallic sites with N2Cu-S-NiN2 moiety. In H-cell, Cu-S-Ni/SNC shows high CO Faraday efficiency of 98.1% at -0.65 V versus RHE. Benefiting from the charge tuning effect between the metal site and bridged sulfur atoms, a large current density of 550 mA cm-2 can be achieved at -1.00 V in flow cell. Additionally, in situ XAS, attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and density functional theory (DFT) calculations show Cu as the main adsorption site is dual-regulated by Ni and S atoms, which enhances CO2 activation and accelerates the formation of *COOH intermediates. This kind of asymmetric bimetallic atom catalysts may open new pathways for precision preparation and performance regulation of atomic materials toward energy applications. This article is protected by copyright. All rights reserved.

5.
Small ; : e2402673, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844996

RESUMO

Atherosclerosis (AS) is a common cause of coronary heart disease and stroke. The delivery of exogenous H2S and in situ production of O2 within atherosclerotic plaques can help suppress inflammatory cell infiltration and alleviate disease progression. However, the uncontrolled release of gas donors hinders achieving effective drug concentrations and causes toxic effects. Herein, diallyl trisulfide (DATS)-loaded metal-organic cage (MOC)-68-doped MnO2 nanoparticles are developed as a microenvironment-responsive nanodrug with the capacity for the in situ co-delivery of H2S and O2 to inflammatory cells within plaques. This nanomedicine exhibited excellent monodispersity and stability and protected DATS from degradation in the circulation. In vitro studies showed that the nanomedicine reduced macrophage polarization toward an inflammatory phenotype and inhibited the formation of foam cells, while suppressing the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and interleukin-1ß. In a mouse model of ApoE-/- genotype, the nanomedicine reduces the plaque burden, inflammatory infiltration, and hypoxic conditions within the plaques. Furthermore, the treatment process and therapeutic effects can be monitored by magnetic resonance image (MRI), in real time upon Mn2+ release from the acidic- and H2O2- microenvironment-responsive MnO2 nanoparticles. The DATS-loaded MOC-68-doped MnO2-based nanodrug holds great promise as a novel theranostic platform for AS.

6.
Support Care Cancer ; 32(7): 428, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869623

RESUMO

PURPOSE: The purpose of this study was to assess participants' perceptions and experiences while participating in a Food is Medicine medically tailored meal plus intensive nutrition counseling intervention to create a theoretical explanation about how the intervention worked. METHODS: This interpretive qualitative study included the use of semi-structured interviews with active participants in a randomized controlled trial aimed at understanding how a medically tailored meal plus nutrition counseling intervention worked for vulnerable individuals with lung cancer treated at four cancer centers across the USA. During the 8-month long study, participants in the intervention arm were asked to be interviewed, which were recorded, transcribed verbatim, and analyzed using conventional content analysis with principles of grounded theory. RESULTS: Twenty individuals participated. Data analysis resulted in a theoretical explanation of the intervention's mechanism of action. The explanatory process includes three linked and propositional categories leading to patient resilience: engaging in treatment, adjusting to diagnosis, and active coping. The medically tailored meals plus nutrition counseling engaged participants throughout treatment, which helped participants adjust to their diagnosis, leading to active coping through intentional self-care, behavior change, and improved quality of life. CONCLUSIONS: These findings provide evidence that a Food is Medicine intervention may buffer some of the adversity related to the diagnosis of lung cancer and create a pathway for participants to experience post-traumatic growth, develop resilience, and change behaviors to actively cope with lung cancer. Medically tailored meals plus intensive nutrition counseling informed by motivational interviewing supported individuals' adjustment to their diagnosis and resulted in perceived positive behavior change.


Assuntos
Adaptação Psicológica , Aconselhamento , Neoplasias Pulmonares , Pesquisa Qualitativa , Humanos , Neoplasias Pulmonares/psicologia , Neoplasias Pulmonares/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Aconselhamento/métodos , Idoso , Qualidade de Vida , Refeições/psicologia , Autocuidado/métodos , Autocuidado/psicologia
7.
Biosens Bioelectron ; 261: 116495, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38878699

RESUMO

In this study, we have for the first time constructed a ratiometric ECL biosensor for the ultrasensitive detection of microRNAs (miRNAs) using gold nanoparticles (Au NPs) to trigger both the low-potential emission from conjugated polymer poly(9,9-dioctylfluorene-2,7-diyl) dots (PFO Pdots) and the LSPR-ECL effect with sulfur-doped boron nitride quantum dots (S-BN QDs). PFO Pdots were first applied to the Au NPs-modified electrode, followed by covalent binding to capture the hairpin H1. Immediately thereafter, a small amount of miRNA-141 was able to generate a large amount of output DNA (OP) by traversing the target cycle. OP, H3-S-BN QDs, and H4-glucose oxidase (H4-GOD) were then added sequentially to the Au NPs-modified electrode surface, and the hybridization chain reaction (HCR) was initiated. This resulted in the introduction of a large amount of GOD into the system, which catalyzed the in situ formation of the co-reactant hydrogen peroxide (H2O2) from the substrate glucose. Due to the electron transfer effect, the production of H2O2 led to the ECL quenching of PFO Pdots. Meanwhile, H2O2 served as a co-reactant of S-BN QDs, resulting in strong ECL emission of S-BN QDs at the cathode. Furthermore, the cathodic ECL intensity of S-BN QDs was further enhanced by an LSPR-ECL mechanism between Au NPs and S-BN QDs. By measuring the ratio of ECL intensities at two excitation potentials, this approach could provide sensitive and reliable detection of miRNA-141 in the range of 0.1 fM ∼10 nM, with a detection limit of 0.1 fM.

8.
Clin Immunol ; 265: 110268, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838930

RESUMO

PURPOSE: To report a case of a five-month-old Chinese infant who died of interleukin-1 receptor-associated kinase-4 (IRAK-4) deficiency presenting with rapid and progressive Pseudomonas aeruginosa sepsis. METHODS: The genetic etiology of IRAK-4 deficiency was confirmed through trio-whole exome sequencing and Sanger sequencing. Functional consequences were invested using an in vitro minigene splicing assay. RESULTS: Trio-whole exome sequencing of genomic DNA identified two novel compound heterozygous mutations, IRAK-4 (NM_016123.3): c.942-1G > A and c.644_651+ 6delTTGCAGCAGTAAGT in the proband, which originated from his symptom-free parents. These mutations were predicted to cause frameshifts and generate three truncated proteins without enzyme activity. CONCLUSIONS: Our findings expand the range of IRAK-4 mutations and provide functional support for the pathogenic effects of splice-site mutations. Additionally, this case highlights the importance of considering the underlying genetic defects of immunity when dealing with unusually overwhelming infections in previously healthy children and emphasizes the necessity for timely treatment with wide-spectrum antimicrobials.

9.
Cancer Lett ; 597: 217008, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38849012

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and it lacks specific therapeutic targets and effective treatment protocols. By analyzing a proteomic TNBC dataset, we found significant upregulation of sideroflexin 1 (SFXN1) in tumor tissues. However, the precise function of SFXN1 in TNBC remains unclear. Immunoblotting was performed to determine SFXN1 expression levels. Label-free quantitative proteomics and liquid chromatography-tandem mass spectrometry were used to identify the downstream targets of SFXN1. Mechanistic studies of SFXN1 and cellular inhibitor of PP2A (CIP2A) were performed using immunoblotting, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Functional experiments were used to investigate the role of SFXN1 in TNBC cells. SFXN1 was significantly overexpressed in TNBC tumor tissues and was associated with unfavorable outcomes in patients with TNBC. Functional experiments demonstrated that SFXN1 promoted TNBC growth and metastasis in vitro and in vivo. Mechanistic studies revealed that SFXN1 promoted TNBC progression by inhibiting the autophagy receptor TOLLIP (toll interacting protein)-mediated autophagic degradation of CIP2A. The pro-tumorigenic effect of SFXN1 overexpression was partially prevented by lapatinib-mediated inhibition of the CIP2A/PP2A/p-AKT pathway. These findings may provide a new targeted therapy for patients with TNBC.

10.
Metab Eng ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908817

RESUMO

Chinese hamster ovary (CHO) cells require cysteine for growth and productivity in fed-batch cultures. In intensified processes, supplementation of cysteine at high concentrations is a challenge due to its limited solubility and instability in solution. Methionine can be converted to cysteine (CYS) but key enzymes, cystathionine beta-synthase (Cbs) and cystathionine gamma-lyase (Cth), are not active in CHO cells resulting in accumulation of an intermediate, homocysteine (HCY), in cell culture milieu. In this study, Cbs and Cth were overexpressed in CHO cells to confer cysteine prototrophy, i.e., the ability to grow in a cysteine free environment. These pools (CbCt) needed homocysteine and beta-mercaptoethanol (ßME) to grow in CYS-free medium. To increase intracellular homocysteine levels, Gnmt was overexpressed in CbCt pools. The resultant cell pools (GnCbCt), post adaptation in CYS-free medium with decreasing residual HCY and ßME levels, were able to proliferate in the HCY-free, ßME-free and CYS-free environment. Interestingly, CbCt pools were also able to be adapted to grow in HCY-free and CYS-free conditions, albeit at significantly higher doubling times than GnCbCt cells, but couldn't completely adapt to ßME-free conditions. Further, single cell clones derived from the GnCbCt cell pool had a wide range in expression levels of Cbs, Cth and Gnmt and, when cultivated in CYS-free fed-batch conditions, performed similarly to the wild type (WT) cell line cultivated in CYS supplemented fed-batch culture. Intracellular metabolomic analysis showed that HCY and glutathione (GSH) levels were lower in the CbCt pool in CYS-free conditions but were restored closer to WT levels in the GnCbCt cells cultivated in CYS-free conditions. Transcriptomic analysis showed that GnCbCt cells upregulated several genes encoding transporters as well as methionine catabolism and transsulfuration pathway enzymes that support these cells to biosynthesize cysteine effectively. Further, 'omics analysis suggested CbCt pool was under ferroptotic stress in CYS-free conditions, which, when inhibited, enhanced the growth and viability of these cells in CYS-free conditions.

11.
JMIR Med Educ ; 10: e54987, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38889074

RESUMO

Background: The integration of chatbots in nursing education is a rapidly evolving area with potential transformative impacts. This narrative review aims to synthesize and analyze the existing literature on chatbots in nursing education. Objective: This study aims to comprehensively examine the temporal trends, international distribution, study designs, and implications of chatbots in nursing education. Methods: A comprehensive search was conducted across 3 databases (PubMed, Web of Science, and Embase) following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram. Results: A total of 40 articles met the eligibility criteria, with a notable increase of publications in 2023 (n=28, 70%). Temporal analysis revealed a notable surge in publications from 2021 to 2023, emphasizing the growing scholarly interest. Geographically, Taiwan province made substantial contributions (n=8, 20%), followed by the United States (n=6, 15%) and South Korea (n=4, 10%). Study designs varied, with reviews (n=8, 20%) and editorials (n=7, 18%) being predominant, showcasing the richness of research in this domain. Conclusions: Integrating chatbots into nursing education presents a promising yet relatively unexplored avenue. This review highlights the urgent need for original research, emphasizing the importance of ethical considerations.


Assuntos
Educação em Enfermagem , Humanos
12.
Environ Sci Technol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900148

RESUMO

Surface-active organics lower the aerosol surface tension (σs/a), leading to enhanced cloud condensation nuclei (CCN) activity and potentially exerting impacts on the climate. Quantification of σs/a is mainly limited to laboratory or modeling work for particles with selected sizes and known chemical compositions. Inferred values from ambient aerosol populations are deficient. In this study, we propose a new method to derive σs/a by combining field measurements made at an urban site in northern China with the κ-Köhler theory. The results present new evidence that organics remarkably lower the surface tension of aerosols in a polluted atmosphere. Particles sized around 40 nm have an averaged σs/a of 53.8 mN m-1, while particles sized up to 100 nm show σs/a values approaching that of pure water. The dependence curve of σs/a with the organic mass resembles the behavior of dicarboxylic acids, suggesting their critical role in reducing the surface tension. The study further reveals that neglecting the σs/a lowering effect would result in lowered ultrafine CCN (diameter <100 nm) concentrations by 6.8-42.1% at a typical range of supersaturations in clouds, demonstrating the significant impact of surface tension on the CCN concentrations of urban aerosols.

13.
Org Biomol Chem ; 22(24): 4968-4972, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38825973

RESUMO

Visible light-induced aza-6π electrocyclization was developed for the synthesis of aza-arenes from nitroarenes with diverse aldehydes. This protocol allows the reduction of nitroarenes by B2nep2 and subsequent 6π-electrocyclization of the in situ formed imine under visible light. An array of 6- and multi-substituted phenanthridines were constructed in moderate to good yields under purple LEDs at room temperature. A wide scope of substrates with diverse functional groups were well tolerated. In addition, the synthetic utility of this methodology was further demonstrated in the late-stage functionalization of celecoxib.

14.
Cardiovasc Res ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850163

RESUMO

AIMS: The widespread use of immune checkpoint inhibitors (ICIs) has demonstrated significant survival benefits for cancer patients and also carry the risk of immune-related adverse events (irAEs). ICIs-associated myocarditis is a rare and serious adverse event with a high mortality rate. Here, we explored the mechanism underlying ICIs-associated myocarditis. METHODS AND RESULTS: Using the peripheral blood of patients with ICIs therapy and ICIs treated mice with transplanted tumors, we dissect the immune cell subsets and inflammatory factors associated with myocarditis. Compared to the control group, patients with myocarditis after ICIs therapy showed an increase in NK cells and myeloid cells in peripheral blood, while T cells significantly decreased. Among T cells, there was an imbalance of CD4/CD8 ratio in the peripheral blood of myocarditis patients, with a significant decrease in central memory CD4+ T (CD4+ TCM) cells. RNA-Seq revealed that CD4+ TCM cells in myocarditis patients were an immunosuppressive cell subset, which highly express the immunosuppressive factor IL4I1. To elucidate the potential mechanism of the decrease in CD4+ TCM cells, protein array was performed and revealed that several inflammatory factors gradually increased with the severity of myocarditis in the myocarditis group, such as IL-1B/CXCL13/CXCL9, while the myocardial protective factor IL-15 decreased. Correlation analysis indicated a positive correlation between IL-15 and CD4+ TCM cells, with high expression of IL-15 receptor IL15RA. Furthermore, in vivo studies using an anti-PDL1 antibody in a mouse tumor model indicated a reduction in CD4+ TCM cells and an increase in CD8+ TEMRA cells, alongside evidence of cardiac fibrosis. Conversely, combining anti-PDL1 antibody treatment with IL-15 led to a resurgence of CD4+ TCM cells, a reduction in CD8+ TEMRA cells, and a mitigated risk of cardiac fibrosis. CONCLUSIONS: Our data highlight CD4+ TCM cells as a crucial role in cardiac protection during ICIs therapy. IL-15, IL4I1 and CD4+ TCM cells can serve as therapeutic targets to reduce ICIs-associated myocarditis in cancer patients.

15.
Polymers (Basel) ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891492

RESUMO

Cellulose detectors, as green sensors, are some of the defensive mechanisms of plants which combat environmental stresses. However, extracted cellulose struggles to fulfil these functionalities due to its rigid physical/chemical properties. In this study, a novel cellulose dual-crosslinked framework (CDCF) is proposed. This comprises a denser temporary physical crosslinking bond (hydrogen bonding) and a looser covalent crosslinking bond (N,N-methylenebisacrylamide), which create deformable spaces between the two crosslinking sites. Abundant pH-sensitive carboxyl groups and ultralight, highly porous structures make CDCF response very sensitive in acid/alkaline vapor environments. Hence, a significant shrinkage of CDCF was observed following exposure to vapors. Moreover, a curcumin-incorporated CDCF exhibited dual shape and color changes when exposed to acid/alkaline vapors, demonstrating great potential for the multi-detection of acid/alkaline vapors.

16.
Purinergic Signal ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922475

RESUMO

Although multiple purinergic receptors mediate the analgesic effects of acupuncture, it remains unclear whether there is mutual interaction between purinergic receptors to jointly mediate the electroacupuncture inhibition of peripheral sensitization in visceral pain. Visceral hypersensitivity was induced by intracolonic 2,4,6-trinitrobenzene sulfonic acid (TNBS) in rat. The antinociception effect of electroacupuncture on visceral pain was evaluated by morphology, behaviors, neuroelectrophysiology and molecular biology techniques. After labeling the colon-related primary sensory neurons with neural retrograde tracer and employing neuropharmacology, neuroelectrophysiology, and molecular biotechnology, the mechanisms of P2X7R, P2Y1R, and P2X3R in colon-related dorsal root ganglion (DRG) neurons alleviating visceral hypersensitivity of irritable bowel syndrome (IBS) by electroacupuncture at Zusanli and Sanyinjiao acupoints.were elucidated from the perspective of peripheral sensitization. Electroacupuncture significantly inhibited TNBS-induced colonic hypersensitivity in rats with IBS, and Satellite Glial Cells (SGCs) in DRG were found to be involved in electroacupuncture-mediated regulation of the electrophysiological properties of neurons. P2X7R was found to play a pain-inducing role in IBS visceral hypersensitivity by affecting P2X3R, and electroacupuncture exerted an analgesic effect by inhibiting P2X7R activation. P2Y1R was found to play an analgesic role in the process of visceral pain, mediating electroacupuncture to relieve visceral hypersensitivity. P2Y1R relieved visceral pain by inhibiting P2X3R in neurons associated with nociception, with P2X7R identified as upstream of P2Y1R up-regulation by electroacupuncture. Our study suggests that the P2X7R → P2Y1R → P2X3R inhibitory pathway in DRG mediates the inhibition of peripheral sensitization by electroacupuncture in rats with IBS visceral hypersensitivity.

17.
STAR Protoc ; 5(2): 103132, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38875112

RESUMO

The mandatory usage of extracellular matrix (ECM) gels in 3D cultures limits antibody penetration and increases background, while the removal of ECM gel causes disruption of morphology and sample loss. These factors pose challenges to effective immune labeling-based staining. Here, we present a protocol for whole-mount immunofluorescence staining of gel-embedded pancreatic organoids. We describe steps for sample fixation, blocking, and antibody incubation. We detail procedures for washing antibodies and mounting.


Assuntos
Matriz Extracelular , Imunofluorescência , Organoides , Pâncreas , Organoides/citologia , Organoides/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Pâncreas/citologia , Pâncreas/metabolismo , Imunofluorescência/métodos , Animais , Coloração e Rotulagem/métodos , Humanos , Géis/química , Camundongos
18.
Inorg Chem ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902911

RESUMO

Pathogenic bacteria have consistently posed a formidable challenge to human health, creating the critical need for effective antibacterial solutions. In response, enzyme-metal-organic framework (MOF) composites have emerged as a promising class of antibacterial agents. This study focuses on the development of an enzyme-MOF composite based on HZIF-8, incorporating the advantages of simple synthesis, ZIF-8 antibacterial properties, lysozyme hydrolysis, and high biological safety. Through a one-pot method, core-shell nanoparticles (HZIF-8) were synthesized. This structure enables efficient immobilization of lysozyme and lactoferrin within the HZIF-8, resulting in the formation of the lysozyme-lactoferrin@HZIF-8 (LYZ-LF@HZIF-8) composite. Upon exposure to light irradiation, HZIF-8 itself possessed antibacterial properties. Lysozyme initiated the degradation of bacterial peptidoglycan and lactoferrin synergistically enhanced the antibacterial effect of lysozyme. All of the above ultimately contributed to comprehensive antibacterial activity. Antibacterial assessments demonstrated the efficacy of the LYZ-LF@HZIF-8 composite, effectively eradicating Staphylococcus aureus at a cell density of 1.5 × 106 CFU/mL with a low dosage of 200 µg/mL and completely inactivating Escherichia coli at 400 µg/mL with the same cell density. The enzyme-MOF composite exhibited significant and durable antibacterial efficacy, with no apparent cytotoxicity in vitro, thereby unveiling expansive prospects for applications in the medical and food industries.

19.
Int J Med Sci ; 21(8): 1447-1460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903931

RESUMO

Background: Metastasis and immunosuppression result in unfavorable prognosis in bladder cancer (BLCA). FGL1 and FGL2 are two members of the fibrinogen-related proteins family, but their potential effects on BLCA remain elusive. Methods: The expression profile of FGL1 and FGL2 in BLCA was analyzed in multiple databases. Furthermore, the expression of FGL2 was validated in BLCA tissues. The predictive capability of FGL2 was evaluated by Kaplan-Meier analysis, univariate analysis, and multivariate Cox regression. A nomogram model was constructed based on FGL2 expression and clinicopathological parameters for clinical practice. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analyses (GSEA) were performed to investigate enrichment in the biological processes. In addition, the correlation between FGL2 and immunological characteristics in the BLCA tumor microenvironment (TME), including tumor-infiltrating immune cells (TICs), cancer-immunity cycles, immune checkpoint molecules (ICPs), immunophenoscores (IPS), and response to anti-PD-L1 immunotherapy was further analyzed. Results: FGL2 was found to be downregulated in BLCA due to hypermethylation of the FGL2 promoter region, which was associated with an unfavorable prognosis. Moreover, BLCA patients with high FGL2 expression exhibited better response to immunotherapy. Conclusions: Our research revealed that FGL2 was downregulated in BLCA and was negatively correlated with DNA methylation. High FGL2 expression was confirmed as an independent risk for prognosis. Moreover, FGL2 is a promising indicator for the response to immunotherapy in patients with BLCA.


Assuntos
Biomarcadores Tumorais , Fibrinogênio , Regulação Neoplásica da Expressão Gênica , Imunoterapia , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/mortalidade , Biomarcadores Tumorais/genética , Prognóstico , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Fibrinogênio/genética , Fibrinogênio/metabolismo , Masculino , Feminino , Nomogramas , Metilação de DNA/genética , Pessoa de Meia-Idade , Idoso , Estimativa de Kaplan-Meier
20.
Meat Sci ; 216: 109574, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38909450

RESUMO

The current study aimed to investigate the metabolic and microbial mechanisms behind the effects of dietary wheat levels on intramuscular fat (IMF) content in the psoas major muscle (PM) of finishing pigs. Thirty-six barrows were arbitrarily assigned to two groups and fed with diets containing 25% or 55% wheat. Enhancing dietary wheat levels led to low energy states, resulting in reduced IMF content. This coincided with reduced serum glucose and low-density lipoprotein cholesterol levels. The AMP-activated protein kinase α2/sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α pathway may be activated by high-wheat diets, causing downregulation of adipogenesis and lipogenesis genes, and upregulation of lipolysis and gluconeogenesis genes. High-wheat diets decreased relative abundance of Lactobacillus and Coprococcus, whereas increased SMB53 proportion, subsequently decreasing colonic propionate content. Microbial glycolysis/gluconeogenesis, d-glutamine and D-glutamate metabolism, flagellar assembly, and caprolactam degradation were linked to IMF content. Metabolomic analysis indicated that enhancing dietary wheat levels promoted the protein digestion and absorption and affected amino acids and lipid metabolism. Enhancing dietary wheat levels reduced serum glucose and colonic propionate content, coupled with strengthened amino acid metabolism, contributing to the low energy states. Furthermore, alterations in microbial composition and propionate resulted from high-wheat diets were associated with primary bile acid biosynthesis, arachidonic acid metabolism, steroid hormone biosynthesis, and biosynthesis of unsaturated fatty acids, as well as IMF content. Colonic microbiota played a role in reducing IMF content through modulating the propionate-mediated peroxisome proliferators-activated receptor signaling pathway. In conclusion, body energy and gut microbiota balance collectively influenced lipid metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...