Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 226: 105900, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705200

RESUMO

BACKGROUND & AIMS: The spread of foot-and-mouth disease virus (FMDV) through aerosol droplets among cloven-hoofed ungulates in close contact is a major obstacle for successful animal husbandry. Therefore, the development of suitable mucosal vaccines, especially nasal vaccines, to block the virus at the initial site of infection is crucial. PATIENTS AND METHODS: Here, we constructed eukaryotic expression plasmids containing the T and B-cell epitopes (pTB) of FMDV in tandem with the molecular mucosal adjuvant Fms-like tyrosine kinase receptor 3 ligand (Flt3 ligand, FL) (pTB-FL). Then, the constructed plasmid was electrostatically attached to mannose-modified chitosan-coated poly(lactic-co-glycolic) acid (PLGA) nanospheres (MCS-PLGA-NPs) to obtain an active nasal vaccine targeting the mannose-receptor on the surface of antigen-presenting cells (APCs). RESULTS: The MCS-PLGA-NPs loaded with pTB-FL not only induced a local mucosal immune response, but also induced a systemic immune response in mice. More importantly, the nasal vaccine afforded an 80% protection rate against a highly virulent FMDV strain (AF72) when it was subcutaneously injected into the soles of the feet of guinea pigs. CONCLUSIONS: The nasal vaccine prepared in this study can effectively induce a cross-protective immune response against the challenge with FMDV of same serotype in animals and is promising as a potential FMDV vaccine.


Assuntos
Administração Intranasal , Quitosana , Vírus da Febre Aftosa , Febre Aftosa , Nanosferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Vacinas Virais , Animais , Quitosana/química , Quitosana/administração & dosagem , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/genética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Febre Aftosa/prevenção & controle , Febre Aftosa/imunologia , Camundongos , Nanosferas/química , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Camundongos Endogâmicos BALB C , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Ácidos Nucleicos/administração & dosagem , Imunidade nas Mucosas , Sistemas de Liberação de Medicamentos
2.
J Environ Manage ; 356: 120598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490007

RESUMO

Microplastic pollution in the soil environment is of great concern. However, the current research on microplastics (MPs) in Southwest China mainly focuses on their distribution characteristics and sources in soil, making the understanding of the soil properties and land use patterns influencing soil MPs insufficient. In this study, the abundance and distribution characteristics of MPs in the soil of different land use patterns in Guizhou Province were determined. The results revealed that the average abundance of MPs in soils was 2936 items/kg, ranging from 780 to 9420 items/kg. The MPs were mainly small particle size (0-0.5 mm), granular, and black, accounting for 87.5%, 36.6%, and 82.2%, respectively. The most common polymer types of MPs were polypropylene, polyethylene terephthalate, and polyethylene, which accounted for 20.4%, 16.8%, and 16.4%, respectively. As soil bulk density increased, microplastic abundance and small particle size decreased. Soil microplastic abundance slightly decreased with increasing soil porosity. The abundance of MPs increased with the increase in soil pH, but no significant correlation was observed between soil organic matter content and microplastic abundance. pH was the major factor that affected the microplastic distribution, which accounted for 32.5%. This study provides insight into the distribution and influencing factors of soil MPs and also provides a theoretical basis for subsequent research on soil microplastic pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , China , Polietileno , Solo , Monitoramento Ambiental
3.
Small ; : e2401070, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528434

RESUMO

Bismuth telluride has long been recognized as the most promising near-room temperature thermoelectric material for commercial application; however, the thermoelectric performance for n-type Bi2(Te, Se)3-based alloys is far lagging behind that of its p-type counterpart. In this work, a giant hot deformation (GD) process is implemented in an optimized Bi2Te2.694Se0.3I0.006+3 wt%K2Bi8Se13 precursor and generates a unique staggered-layer structure. The staggered-layered structure, which is only observed in severely deformed crystals, exhibits a preferential scattering on heat-carrying phonons rather than charge-carrying electrons, thus resulting in an ultralow lattice thermal conductivity while retaining high-weight carrier mobility. Moreover, the staggered-layer structure is located adjacent to the van der Waals gap in Bi2(Te, Se)3 lattice and is able to strengthen the interaction between anion layers across the gap, leading to obviously improved compressive strength and Vickers hardness. Consequently, a high peak figure of merit ZT of ≈ 1.3 at 423 K, and an average ZT of ≈ 1.2 at 300-473 K can be achieved in GD sample. This study demonstrates that the GD process can successfully decouple the electrical and thermal transports with simultaneously enhanced mechanic performance.

4.
Sci Total Environ ; 915: 169978, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38215836

RESUMO

As an emerging environmental pollutant, microplastics (MPs) have received widespread attention. Recently, studies examining microplastic pollution in plateau lakes have been increasing, but few have examined the distributions, sources, and fates of MPs in different plateau areas. In this work, the abundances and characteristics of MPs in surface waters and sediments in lakes of the Qinghai-Tibet Plateau (QTP) and Yunnan-Guizhou Plateau (YGP) were systematically investigated. The abundances of MPs in the lakes of the QTP ranges within 0.05-1.8 n/L in surface waters and 10-2643.7 n/kg in sediments. In the lakes of the YGP, the abundances of MPs ranged within 1.3-10.1 n/L in surface waters and 171.7-4260 n/kg in sediments. The dominant shape, color, and size class of MPs were fiber, transparent, and 0-0.5 mm in plateau lakes, respectively. MPs were mainly composed of polypropylene, polyethylene, and polyethylene terephthalate polymers. The different sources of MPs in the QTP and YGP lakes were mainly due to differences in human activities. The primary sources of microplastic pollution in the lakes of the QTP were tourism and atmospheric transport, while sewage discharge, agriculture, and fishing activities were the main sources of MPs in urban lakes of the YGP. Although the level of microplastic pollution in plateau lakes was relatively low, the sources should be identified and monitored so that the effects and extent of microplastic pollution in these fragile environments can be fully understood. This study provides a valuable dataset and theoretical basis for subsequent research on microplastic pollution in plateau lakes.

5.
J Hazard Mater ; 466: 133603, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280320

RESUMO

The occurrence, sources, effects, and risks of microplastics (MPs) in farmland soils have attracted considerable attention. However, the pollution and ecological characteristics of MPs in farmland soils at different levels of rocky desertification remain unclear. We collected and analyzed farmland soil samples from rocky desertification areas in Guizhou, China, ranging from no to heavy risks. We explored differences and migration of MPs across these areas, unveiled the relationship between diversity, niche, and risks of MPs, and determined influencing factors. The average abundance of soil MPs was 8721 ± 3938 item/kg, and the abundance and contamination factor (CF) of MPs escalated with the increase in rocky desertification level. Diversity, niche, and risk of soil MPs in different rocky desertification areas were significantly different. Rocky desertification caused both MP community differences and linked MP communities at different sites. Diversity and niche significantly affected MP risk (p < 0.05). Environmental factors with significant correlations (p < 0.05) with the abundance and ecological characteristics of MPs varied significantly in soils of different rocky desertification areas. This study advances our comprehension of MP pollution in farmland soils within rocky desertification areas, offering essential data and theoretical insights for the development of control strategies.

6.
Environ Res ; 244: 117902, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092237

RESUMO

Mercury (Hg) exposure is increasing in terrestrial birds; however, studies on its sources are scarce. In the present study, we elucidated the food composition of green-backed tit nestlings from three urban forest parks (CPL, AHL, and LCG) using live videography observation (LVO). Furthermore, the daily dietary intakes of inorganic Hg (IHg) (MDIIHg) and methylmercury (MeHg) (MDIMeHg) were determined using the Bayesian isotope mixing model (BIMM) to uncover the nestlings' specific dietary Hg contribution. Both LVO and BIMM indicated that Lepidoptera (primarily caterpillar) constituted the primary food source for the nestlings in the three forests, accounting for approximately 60% of their diet in all three forest parks. The estimated MDI of Hg revealed that lepidopterans and spiders primarily contributed to IHg exposure, with a co-contribution ratio of 71.8%-97.7%. Unexpectedly, dietary MeHg was mostly derived from spiders; the highest contribution ratio of 93.6% was recorded at CPL, followed by another peak ratio of 92.9% at LCG. However, the dietary exposure was primarily IHg, accounting for 69.8% (AHL), 62.0% (LCG), and 61.3% (CPL) of the nestlings. Our study findings highlight the importance of dietary IHg transfer in evaluating the effects of Hg in nestlings. LVO, coupled with BIMM, is an effective tool for determining the food compositions of songbird nestlings and estimating the contribution of specific diets.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Aves Canoras , Animais , Mercúrio/análise , Teorema de Bayes , Monitoramento Ambiental , Dieta , Isótopos
7.
Opt Express ; 31(19): 31463-31485, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710665

RESUMO

The problems of laser source frequency drift (LSFD) and phase noise in distributed acoustic sensor (DAS) make it difficult to recover the true vibration phase curve, which limits its application scope in the field of seismic exploration. In order to suppress the influence of phase noise and phase drift on the phase signal and improve the signal-to-noise ratio (SNR) of the phase curve, this paper proposes a method based on symmetric extreme value expansion, symplectic geometry mode decomposition and Pearson correlation coefficient (SEE-SGMD-PCC). Firstly, the mathematical principles and processing flow of the SEE-SGMD-PCC algorithm were introduced, and the effectiveness of this method was verified through multiple sets of simulation experiments. Secondly, The DAS system implemented using digital heterodyne coherent detection technology was used as the experimental platform, and the phase drift and phase noise sources of the phase signal were analyzed in detail. Next, in single frequency and multi frequency vibration signal experiments, compared with other methods, the SNR of the phase signal is significantly improved, and the phase information is effectively restored. Finally, the feasibility of the proposed method was demonstrated through two on-site experiments. The proposal of this method further promotes the application process of DAS in complex seismic exploration environments.

8.
Small ; 19(19): e2207464, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36748859

RESUMO

Eco-friendly transparent dielectric ceramics with superior energy storage properties are highly desirable in various transparent energy-storage electronic devices, ranging from advanced transparent pulse capacitors to electro-optical multifunctional devices. However, the collaborative improvement of energy storage properties and optical transparency in KNN-based ceramics still remains challenging. To address this issue, multiple synergistic strategies are proposed, such as refining the grain size, introducing polar nanoregions, and inducing a high-symmetry phase structure. Accordingly, outstanding energy storage density (Wtotal  ≈7.5 J cm-3 , Wrec  ≈5.3 J cm-3 ) and optical transmittance (≈76% at 1600 nm, ≈62% at 780 nm) are simultaneously realized in the 0.94(K0.5 Na0.5 )NbO3 -0.06Sr0.7 La0.2 ZrO3 ceramic, together with satisfactory charge-discharge performances (discharge energy density: ≈2.7 J cm-3 , power density: ≈243 MW cm-3 , discharge rate: ≈76 ns), surpassing previously reported KNN-based transparent ceramics. Piezoresponse force microscopy and transmission electron microscopy revealed that this excellent performance can be attributed to the nanoscale domain and submicron-scale grain size. The significant improvement in the optical transparency and energy storage properties of the materials resulted in the widening of the application prospects of the materials.

9.
Small ; 19(17): e2206439, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36703537

RESUMO

GeTe-based pseudo-binary (GeTe)x (AgSbTe2 )100- x (TAGS-x) is recognized as a promising p-type mid-temperature thermoelectric material with outstanding thermoelectric performance; nevertheless, its intrinsic structural transition and metastable microstructure (due to Ag/Sb/Ge localization) restrict the long-time application of TAGS-x in practical thermoelectric devices. In this work, a series of non-stoichiometric (GeTe)x (Ag1- δ Sb1+ δ Te2+ δ )100- x (x = 85∼50; δ = ≈0.20-0.23), referred to as δ-TAGS-x, with all cubic phase over the entire testing temperature range (300-773 K), is synthesized. Through optimization of crystal symmetry and microstructure, a state-of-the-art ZTmax of 1.86 at 673 K and average ZTavg of 1.43 at ≈323-773 K are realized in δ-TAGS-75 (δ = 0.21), which is the highest value among all reported cubic-phase GeTe-based thermoelectric systems so far. As compared with stoichiometric TAGS-x, the remarkable thermoelectric achieved in cubic δ-TAGS-x can be attributed to the alleviation of highly (electrical and thermal) resistive grain boundary Ag8 GeTe6 phase. Moreover, δ-TAGS-x exhibits much better mechanical properties than stoichiometric TAGS-x, together with the outstanding thermoelectric performance, leading to a robust single-leg thermoelectric module with ηmax of ≈10.2% and Pmax of ≈0.191 W. The finding in this work indicates the great application potential of non-stoichiometric δ-TAGS-x in the field of mid-temperature waste heat harvesting.

10.
Int J Biol Macromol ; 227: 1191-1202, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462593

RESUMO

Constructing an eco-friendly phenolic resin with high toughness, strength, and flame retardancy is of great significance and challengeable in the wood-based panels industry. Acacia mangium tannin (AMT), as a biological macromolecule, was decorated onto graphene through ball milling. The formed AMT-functionalized graphene nanoplatelets (AMT@GnPs) were used to replace 40 % phenol to greenly modify and reinforce phenolic resins. The fabricated phenolic resin (BGTPF) exhibited high wet bonding strength of 1.58 MPa, high tensile strength of 24.4 MPa, and large toughness of 0.35 MJ m-3, which were 38.6 %, 27.7 %, and 75.0 % increments compared with the 1.14 MPa, 19.1 MPa and 0.20 MJ m-3 of the neat AMT-modified phenolic resin (TPF). These improvements were attributable to the good compatibility and strong interfacial interactions between AMT@GnPs and the resin matrix, which promoted the transfer and dissipation of load energy. The prepared BGTPF resin showed good flame retardancy and high thermal stability. The peak HRR decreased from 15.5 for TPF to 6.9 W/g for BGTPF. This work presents a new, low-cost, and sustainable strategy to construct mechanically strong, tough, and flame-retardant tannin-based phenolic resins for many promising applications such as engineered wood-based products.


Assuntos
Acacia , Retardadores de Chama , Grafite , Taninos , Fenóis , Resinas Vegetais
11.
Carbohydr Polym ; 296: 119892, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087967

RESUMO

Inspired by the phenol-amine chemistry and biomineralization of insect cuticles, we developed a green and facile strategy for preparing a bio-adhesive with excellent adhesion properties, mildew resistance, and antibacterial activity. This biomimetic strategy incorporates functional catechol-modified ε-polylysine and vanillin via grafting and Schiff base reactions. The biomineralized cellulose nanocrystals were prepared using a cellulose nanocrystal bio-template by regulating the in-situ biomineralization of inorganic nanoparticles, thereby building an optimized organic-inorganic mineralization framework in the polymer. The bonding strength of composite adhesive was significantly improved by multiple cross-linking networks through sacrificial hydrogen bonds, electrostatic interactions, and dynamic covalent bonds. The adhesion strength of the composite adhesive reached 1.13 MPa, which was 151% higher than the pristine adhesive. As a result of the synergistic effect of the catechol component, cationic ε-polylysine, and aldehyde group, the bio-adhesive also exhibited favorable anti-mildew and anti-bacterial properties.


Assuntos
Celulose , Nanopartículas , Adesivos/química , Aminas , Catecóis/química , Celulose/química , Nanopartículas/química , Polilisina
12.
Int J Biol Macromol ; 219: 611-625, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35952812

RESUMO

Soybean meal (SM)-based adhesive can solve the issues of formaldehyde emission and over-reliance of aldehyde-based resins but suffers from poor water resistance, weak adhesion strength, and high brittleness. Herein, a high-performance adhesive inspired by lobster cuticular sclerotization was developed using catechol-rich condensed tannin-functionalized boron nitride nanosheets (CT@BNNSs), amino-containing chitosan (CS), and SM (CT@BNNSs/CS/SM). The oxidative crosslinking between the catechol and amino, initiated by oxygen at high temperatures, formed a strengthened and water-resistant interior network. These strong intermolecular interactions induced by phenol-amine synergy accompanied by the reinforcement of uniformly dispersed BNNSs improved the load transfer and energy dissipation capacity, endowing the adhesive with great cohesion strength. Given these synergistic effects, the biomimetic CT@BNNSs/CS/SM adhesive caused noticeable improvements in water tolerance, mechanical strength, and toughness over the neat SM adhesive, e.g., enhanced wet shear strength (1.46 vs. 0.66 MPa, respectively), boiling water shear strength (0.92 vs. 0.43 MPa, respectively), and debonding work (0.368 vs. 0.113 J, respectively). Thus, this study provided a green and low-cost bionic strategy for the preparation of high-performance biomass adhesives.


Assuntos
Quitosana , Proantocianidinas , Adesivos , Aldeídos , Aminas , Biomimética , Compostos de Boro , Catecóis , Formaldeído , Oxigênio , Glycine max , Água
13.
ACS Appl Mater Interfaces ; 14(26): 30046-30055, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731615

RESUMO

CuGaTe2 has become a widely studied mid-temperature thermoelectric material due to the advantages of large element abundance, proper band gap, and intrinsically high Seebeck coefficient. However, the intrinsically high lattice thermal conductivity and low room-temperature electrical conductivity result in a merely moderate thermoelectric performance for pristine CuGaTe2. In this work, we found that Cu deficiency can significantly reduce the activation energy Ea of Cu vacancies from ∼0.17 eV for pristine CuGaTe2 to nearly zero for Cu0.97GaTe2, thus leading to dramatic improvements in hole concentration and power factor. More remarkably, element permutations (Ag/Cu and In/Ga) at both cation sites can effectively reduce the lattice thermal conductivity at the entire testing temperatures by producing intensive atomic-scale mass and strain fluctuations. Eventually, an ultrahigh peak ZTmax value of ∼1.5 at 873 K is achieved in the composition of Cu0.72Ag0.25Ga0.6In0.4Te2, while a large average ZTavg value of ∼0.7 (323-873 K) is obtained in the Cu0.67Ag0.3Ga0.6In0.4Te2 sample, both of which are significant improvements over pristine CuGaTe2.

14.
J Colloid Interface Sci ; 625: 415-424, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35724464

RESUMO

Manufacturing dielectric/magnetic composites with hierarchical structure is regard as a promising strategy for the progress of high-performance microwave absorption (MA) materials. In this paper, the nano-grass structured CoNiO2 magnetic shell was uniformly anchored on the yeast-derived carbon microspheres by in-situ one-pot synthesis method. Profiting from the unique nano-grass and core-shell structure, capable dielectric/magnetic loss, along with improved impedance matching, the prepared absorber realizes desirable MA performance. The minimum reflection loss (RLmin) reaches up to -44.06 dB at 6.56 GHz. Moreover, the effective absorption bandwidth (EAB, reflection loss (RL) < -10 dB) accomplishes 7.04 GHz under a low filler loading of 20 wt%. This work endeavors a valuable insight for designing innovative core-shell structured materials with high-efficiency MA and broad bandwidth.


Assuntos
Carbono , Micro-Ondas , Carbono/química , Impedância Elétrica , Excipientes , Saccharomyces cerevisiae
15.
Chemosphere ; 299: 134424, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35351481

RESUMO

As the "lungs of the city", urban forests can improve air quality by absorbing air pollutants, becoming hotspots for mercury (Hg) pollution from anthropogenic activities. However, the bioaccumulation and transfer of Hg in the urban forest food web are unclear. In this study, total mercury (THg) and methylmercury (MeHg) concentrations, as well as the stable isotopes of carbon (δ13C) and nitrogen (δ15N) in organisms with different trophic levels (TLs) were investigated in a mid-subtropical urban forest of the Changpoling Forest Park (CFP) in Guiyang City, Guizhou Province, southwestern China. The results showed that THg and MeHg among all taxa ranged from 5.6 to 1267 ng g-1 and 0.046-692 ng g-1, respectively. MeHg% (% of Hg present as MeHg) at different TLs exhibited a wide range of 5.0-69% on average. Both THg and MeHg increased with the TLs from plants to nestling birds, indicating distinct biomagnification through the food web of grasses/pine needles - grasshoppers/caterpillars/katydids/mantis - spiders/songbird nestlings. The trophic magnification slope (TMS) of THg and MeHg were 0.18 ± 0.05 and 0.37 ± 0.08, respectively, suggesting both of them significantly increase along food webs. These findings improve the understanding of biogeochemical Hg cycles in terrestrial food webs and highlight the impacts of terrestrial MeHg on nestling birds.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Bioacumulação , China , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Florestas , Mercúrio/análise , Poluentes Químicos da Água/análise
16.
J Colloid Interface Sci ; 610: 1077-1087, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34887064

RESUMO

Nowadays, developing microwave absorption materials (MAMs) with thin thickness, wide-frequency effective absorption bandwidth (EAB) and strong absorbing capacity is an urgent requirement to tackle the increasingly serious electromagnetic radiation issue. Herein, we report a novel high-performance MAMs by growing Fe3O4 nanoparticles on activated porous carbon derived from egg white via a facile carbonization and subsequent hydrothermal approach. The resultant composite features three-dimensional hierarchical porous carbon embedded with Fe3O4 nanoparticles. Benefiting from the balanced impedance matching and the multi-loss that involve the conductive loss, dielectric loss, dipolar/interfacial polarization loss and magnetic loss, the prepared composite achieves a minimum reflection loss (RL) of -43.7 dB at 9.92 GHz and a broad EAB (RL < -10 dB) of 7.52 GHz (6.24-13.76 GHz) at a thin thickness of 2.5 mm and a low filler content of 20 wt%. This work provides new insights for exploring novel magnetic coupling porous carbon derived from biomass with high-efficiency microwave absorption performance.


Assuntos
Carbono , Micro-Ondas , Biomassa , Magnetismo , Porosidade
17.
Viruses ; 13(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34696469

RESUMO

Foot and mouth disease virus (FMDV), whose transmission occurs through mucosal surfaces, can also be transmitted through aerosols, direct contact, and pollutants. Therefore, mucosal immunity can efficiently inhibit viral colonization. Since vaccine material delivery into immune sites is important for efficient oral mucosal vaccination, the M cell-targeting approach is important for effective vaccination given M cells are vital for luminal antigen influx into the mucosal lymph tissues. In this study, we coupled M cell-targeting ligand Co1 to multi-epitope TB1 of FMDV to obtain TB1-Co1 in order to improve delivery efficiency of the multi-epitope protein antigen TB1. Lactococcus lactis (L. lactis) was engineered to express heterologous antigens for applications as vaccine vehicles with the ability to elicit mucosal as well as systemic immune responses. We successfully constructed L. lactis (recombinant) with the ability to express multi-epitope antigen proteins (TB1 and TB1-Co1) of the FMDV serotype A (named L. lactis-TB1 and L. lactis-TB1-Co1). Then, we investigated the immunogenic potential of the constructed recombinant L. lactis in mice and guinea pigs. Orally administered L. lactis-TB1 as well as L. lactis-TB1-Co1 in mice effectively induced mucosal secretory IgA (SIgA) and IgG secretion, development of a strong cell-mediated immune reactions, substantial T lymphocyte proliferation in the spleen, and upregulated IL-2, IFN-γ, IL-10, and IL-5 levels. Orally administered ligand-conjugated TB1 promoted specific IgG as well as SIgA responses in systemic and mucosal surfaces, respectively, when compared to orally administered TB1 alone. Then, guinea pigs were orally vaccinated with L. lactis-TB1-Co1 plus adjuvant CpG-ODN at three different doses, L. lactis-TB1-Co1, and PBS. Animals that had been immunized with L. lactis-TB1-Co1 plus adjuvant CpG-ODN and L. lactis-TB1-Co1 developed elevated antigen-specific serum IgG, IgA, neutralizing antibody, and mucosal SIgA levels, when compared to control groups. Particularly, in mice, L. lactis-TB1-Co1 exhibited excellent immune effects than L. lactis-TB1. Therefore, L. lactis-TB1-Co1 can induce elevations in mucosal as well as systemic immune reactions, and to a certain extent, provide protection against FMDV. In conclusion, M cell-targeting approaches can be employed in the development of effective oral mucosa vaccines for FMDV.


Assuntos
Epitopos/imunologia , Vírus da Febre Aftosa/metabolismo , Febre Aftosa/imunologia , Lactococcus lactis/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/sangue , Formação de Anticorpos , Modelos Animais de Doenças , Feminino , Vírus da Febre Aftosa/genética , Cobaias , Imunidade nas Mucosas/imunologia , Imunização , Imunoglobulina A Secretora , Lactococcus lactis/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes , Vacinação , Vacinas Virais/imunologia
18.
Chem Commun (Camb) ; 56(13): 1944-1947, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31967625

RESUMO

The lack of efficient hydrogen storage material is one of the bottlenecks for the large-scale implementation of hydrogen energy. Here, a series of new hydrogen storage materials, i.e., anilinide-cyclohexylamide pairs, are proposed via the metallation of an aniline-cyclohexylamine pair. DFT calculations show that the enthalpy change of hydrogen desorption (ΔHd) can be significantly tuned from 60.0 kJ per mol-H2 for the pristine aniline-cyclohexylamine pair to 42.2 kJ per mol-H2 for sodium anilinide-cyclohexylamide and 38.7 kJ per mol-H2 for potassium anilinide-cyclohexylamide, where an interesting correlation between the electronegativity of the metal and the ΔHd was observed. Experimentally, the sodium anilinide-cyclohexylamide pair was successfully synthesised with a theoretical hydrogen capacity of 4.9 wt%, and the hydrogenation and dehydrogenation cycle can be achieved at a relatively low temperature of 150 °C in the presence of commercial catalysts, in clear contrast to the pristine aniline-cyclohexylamine pair which undergoes dehydrogenation at elevated temperatures.

19.
Sensors (Basel) ; 19(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795368

RESUMO

The job-shop scheduling is an important approach to manufacturing enterprises to improve response speed, reduce cost, and improve service. Proactive scheduling for job-shop based on abnormal event monitoring of workpieces and remaining useful life prediction of tools is proposed with radio frequency identification (RFID) and wireless accelerometer in this paper. Firstly, the perception environment of machining job is constructed, the mathematical model of job-shop scheduling is built, the framework of proactive scheduling is put forward, and the hybrid rescheduling strategy based on real-time events and predicted events is adopted. Then, the multi-objective, double-encoding, double-evolving, and double-decoding genetic algorithm (MD3GA) is used to reschedule. Finally, an actual prototype platform to machine job is built to verify the proposed scheduling method. It is shown that the proposed method solves the integration problem of dynamic scheduling and proactive scheduling of processing workpieces, reduces the waste of redundant time for the scheduling, and avoids the adverse impact on abnormal disturbances.

20.
Rev Sci Instrum ; 89(2): 023112, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29495825

RESUMO

This study focuses on improving the accuracy of a grating monochromator on the basis of the grating diffraction equation in combination with an analysis of the mechanical transmission relationship between the grating, the sine bar, and the screw of the scanning mechanism. First, the relationship between the mechanical error in the monochromator with the sine drive and the wavelength error is analyzed. Second, a mathematical model of the wavelength error and mechanical error is developed, and an accurate wavelength calibration method based on the sine bar's length adjustment and error compensation is proposed. Based on the mathematical model and calibration method, experiments using a standard light source with known spectral lines and a pre-adjusted sine bar length are conducted. The model parameter equations are solved, and subsequent parameter optimization simulations are performed to determine the optimal length ratio. Lastly, the length of the sine bar is adjusted. The experimental results indicate that the wavelength accuracy is ±0.3 nm, which is better than the original accuracy of ±2.6 nm. The results confirm the validity of the error analysis of the mechanical system of the monochromator as well as the validity of the calibration method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...