Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kaohsiung J Med Sci ; 40(2): 139-149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37916742

RESUMO

Airway mucous cell metaplasia and mucous hypersecretion is one of the key characteristic pathophysiological status of chronic obstructive pulmonary disease (COPD). micro(mi)RNAs are acknowledged as non-encoding RNA molecules playing important roles in gene expression regulation. In this study, we searched the Gene Expression Omnibus (GEO) database for the differentially expressed miRNAs between COPD and non-COPD controls with bioinformatics analysis. Finally, we focused on miR-513a-5p and investigated the potential mechanism by which miR-513a-5p regulates airway mucous hypersecretion and goblet cell metaplasia. A dual-luciferase reporter assay was then showing that miR-513a-5p targeted the 3'-UTR of TFR1 and inhibited its expression in vitro. In vivo transfection demonstrated that TFR1 downregulation partially blocked MUC5AC hypersecretion and goblet cell hyperplasia in COPD model rats. In vitro study, CSE increased the intracellular expression and secretion of MUC5AC by BEAS-2B branchial epithelial cells in the BEAS-2B cell and THP-1 cell coculture system. Coculture with either miR-513a-5p mimic-pretreated or TFR1-deficient THP-1 cells attenuated intracellular MUC5AC expression in BEAS-2B cells exposed to CSE. ELISA demonstrated that transfection of TFR1 siRNA or pretreatment with miR-513a-5p mimic reduced the secretion of inflammatory factors that are responsible for airway goblet cell hyperplasia, such as IL-1ß, IL-13, and IL-17, by THP-1 cells after CSE stimulation. Our findings supported that miR-513a-5p/TFR1 signaling axis might activate macrophages as well as promote airway inflammation and airway mucous cell hyperplasia in COPD.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Células Caliciformes/metabolismo , Hiperplasia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Metaplasia
2.
Acad Radiol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977890

RESUMO

RATIONALE AND OBJECTIVES: This study aimed to develop and evaluate a radiomics-based model combined with clinical and qualitative radiological (semantic feature [SF]) features to predict immune checkpoint inhibitor-related pneumonitis (CIP) in patients with non-small cell lung cancer (NSCLC) treated with programmed cell death protein 1 inhibitors. MATERIALS AND METHODS: This was a multicenter retrospective casecontrol study conducted from January 1, 2018, to December 31, 2022, at three centers. Patients with NSCLC treated with anti-PD1 were enrolled and randomly divided into two groups (7:3): training (n = 95) and validation (n = 39). Logistic regression (LR) and support vector machine (SVM) algorithms were used to transform features into the models. RESULTS: The study comprised 134 participants from three independent centers (male, 114/134, 85%; mean [±standard deviation] age, 63.92 [±7.9] years). The radiomics score (RS) models built based on the LR and SVM algorithms could accurately predict CIP (area under the receiver operating characteristics curve [AUC], 0.860 [0.780, 0.939] and 0.861 [0.781, 0.941], respectively). The AUCs for the RS-clinic-SF combined model were 0.903 (0.839, 0.967) and 0.826 (0.688, 0.964) in the training and validation cohorts, respectively. Decision curve analysis showed that the combined models achieved high clinical net benefit across the majority of the range of reasonable threshold probabilities. CONCLUSION: This study demonstrated that the combined model constructed by the identified features of RS, clinical features, and SF has the potential to precisely predict CIP. The RS-clinic-SF combined model has the potential to be used more widely as a practical tool for the noninvasive prediction of CIP to support individualized treatment planning.

3.
Front Physiol ; 12: 637790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868003

RESUMO

Full functioning of the airway physical barrier depends on cellular integrity, which is coordinated by a series of tight junction (TJ) proteins. Due to airway spasm, edema, and mucus obstruction, positive end-expiratory alveolar pressure (also termed auto-PEEP) is a common pathophysiological phenomenon, especially in acute asthma attack. However, the influence of auto-PEEP on small airway epithelial TJs is currently unclear. We performed studies to investigate the effect of extra pressure on small airway epithelial TJs and its mechanism. The results first confirmed that a novel mechanosensitive receptor, piezo-1, was highly expressed in the airway epithelium of asthmatic mice. Extra pressure induced the degradation of occludin, ZO-1 and claudin-18 in primary human small airway epithelial cells (HSAECs), resulting in a decrease in transepithelial electrical resistance (TER) and an increase in cell layer permeability. Through in vitro investigations, we observed that exogenous pressure stimulation could elevate the intracellular calcium concentration ([Ca2+] i ) in HSAECs. Downregulation of piezo-1 with siRNA and pretreatment with BAPTA-AM or ALLN reduced the degradation of TJs and attenuated the impairment of TJ function induced by exogenous pressure. These findings indicate the critical role of piezo-1/[Ca2+] i /calpain signaling in the regulation of small airway TJs under extra pressure stimulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...