Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3613, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330538

RESUMO

Cannabidiol (CBD), a major non-psychoactive phytocannabinoid in cannabis, is an effective treatment for some forms of epilepsy and pain. At high concentrations, CBD interacts with a huge variety of proteins, but which targets are most relevant for clinical actions is still unclear. Here we show that CBD interacts with Nav1.7 channels at sub-micromolar concentrations in a state-dependent manner. Electrophysiological experiments show that CBD binds to the inactivated state of Nav1.7 channels with a dissociation constant of about 50 nM. The cryo-EM structure of CBD bound to Nav1.7 channels reveals two distinct binding sites. One is in the IV-I fenestration near the upper pore. The other binding site is directly next to the inactivated "wedged" position of the Ile/Phe/Met (IFM) motif on the short linker between repeats III and IV, which mediates fast inactivation. Consistent with producing a direct stabilization of the inactivated state, mutating residues in this binding site greatly reduced state-dependent binding of CBD. The identification of this binding site may enable design of compounds with improved properties compared to CBD itself.


Assuntos
Canabidiol , Epilepsia , Humanos , Canabidiol/farmacologia , Sítios de Ligação
2.
Stem Cell Reports ; 18(4): 1030-1047, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37044067

RESUMO

Development of new non-addictive analgesics requires advanced strategies to differentiate human pluripotent stem cells (hPSCs) into relevant cell types. Following principles of developmental biology and translational applicability, here we developed an efficient stepwise differentiation method for peptidergic and non-peptidergic nociceptors. By modulating specific cell signaling pathways, hPSCs were first converted into SOX10+ neural crest, followed by differentiation into sensory neurons. Detailed characterization, including ultrastructural analysis, confirmed that the hPSC-derived nociceptors displayed cellular and molecular features comparable to native dorsal root ganglion (DRG) neurons, and expressed high-threshold primary sensory neuron markers, transcription factors, neuropeptides, and over 150 ion channels and receptors relevant for pain research and axonal growth/regeneration studies (e.g., TRPV1, NAV1.7, NAV1.8, TAC1, CALCA, GAP43, DPYSL2, NMNAT2). Moreover, after confirming robust functional activities and differential response to noxious stimuli and specific drugs, a robotic cell culture system was employed to produce large quantities of human sensory neurons, which can be used to develop nociceptor-selective analgesics.


Assuntos
Neurônios , Células-Tronco Pluripotentes , Humanos , Neurônios/metabolismo , Nociceptores , Diferenciação Celular , Transdução de Sinais , Gânglios Espinais/metabolismo , Células Receptoras Sensoriais
3.
Mol Pharmacol ; 103(4): 221-229, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36635052

RESUMO

Sodium channel inhibitors used as local anesthetics, antiarrhythmics, or antiepileptics typically have the property of use-dependent inhibition, whereby inhibition is enhanced by repetitive channel activation. For targeting pain, Nav1.8 channels are an attractive target because they are prominent in primary pain-sensing neurons, with little or no expression in most other kinds of neurons, and a number of Nav1.8-targeted compounds have been developed. We examined the characteristics of Nav1.8 inhibition by one of the most potent Nav1.8 inhibitors so far described, A-887826, and found that when studied with physiologic resting potentials and physiologic temperatures, inhibition had strong "reverse use dependence", whereby inhibition was relieved by repetitive short depolarizations. This effect was much stronger with A-887826 than with A-803467, another Nav1.8 inhibitor. The use-dependent relief from inhibition was seen in both human Nav1.8 channels studied in a cell line and in native Nav1.8 channels in mouse dorsal root ganglion (DRG) neurons. In native Nav1.8 channels, substantial relief of inhibition occurred during repetitive stimulation by action potential waveforms at 5 Hz, suggesting that the phenomenon is likely important under physiologic conditions. SIGNIFICANCE STATEMENT: Nav1.8 sodium channels are expressed in primary pain-sensing neurons and are a prime current target for new drugs for pain. This work shows that one of the most potent Nav1.8 inhibitors, A-887826, has the unusual property that inhibition is relieved by repeated short depolarizations. This "reverse use dependence" may reduce inhibition during physiological firing and should be selected against in drug development.


Assuntos
Morfolinas , Canal de Sódio Disparado por Voltagem NAV1.8 , Neurônios , Niacinamida , Dor , Animais , Humanos , Camundongos , Gânglios Espinais , Potenciais da Membrana , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Canal de Sódio Disparado por Voltagem NAV1.8/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Dor/tratamento farmacológico , Dor/metabolismo , Ratos Sprague-Dawley , Ratos
4.
Cell Calcium ; 106: 102635, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35944383

RESUMO

High-voltage-activated calcium channels (HVACCs) are promising targets for developing analgesics given their roles in controlling synaptic transmission, neuronal excitability and neuropeptide release in primary nociceptive neurons. Despite previous efforts in developing HVACCs inhibitors of various drug modalities, it remains undetermined whether targeting HVACCs directly by a gene therapy approach could lead to pain alleviation in vivo. To test this, Sun and colleagues adopted a post-translational ubiquitination-based knockdown method targeting HVACCs in primary sensory neurons. They showed ablation of HVACC currents in a subset of primary sensory neurons, dampened hyperexcitability of sensory neurons after nerve injury and reduced pain behavior with no apparent adverse effects [1]. The results open the possibility of targeting ion channels with ubiquitination-based knockdown as a promising gene therapy candidate for pain treatment in future clinical studies.


Assuntos
Células Receptoras Sensoriais , Transmissão Sináptica , Animais , Canais de Cálcio/metabolismo , Gânglios Espinais/metabolismo , Dor , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo
5.
JAMA Oncol ; 8(5): 706-714, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323856

RESUMO

Importance: Induction chemotherapy added to concurrent chemoradiotherapy significantly improves survival for patients with locoregionally advanced nasopharyngeal carcinoma, but the optimal induction regimen remains unclear. Objective: To determine whether induction chemotherapy with paclitaxel, cisplatin, and capecitabine (TPC) improves survival vs cisplatin and fluorouracil (PF) prior to chemoradiotherapy for patients with stage IVA to IVB nasopharyngeal carcinoma. Design, Setting, and Participants: This randomized, open-label, phase 3 clinical trial recruited 238 patients at 4 hospitals in China from October 20, 2016, to August 29, 2019. Patients were 18 to 65 years of age with treatment-naive, nonkeratinizing stage IVA to IVB nasopharyngeal carcinoma and an Eastern Cooperative Oncology Group performance status of 0 to 1. Interventions: Patients were randomly assigned (1:1) to receive induction chemotherapy with two 21-day cycles of TPC (intravenous paclitaxel [150 mg/m2, day 1], intravenous cisplatin [60 mg/m2, day 1], and oral capecitabine [1000 mg/m2 orally twice daily, days 1-14]) or PF (intravenous cisplatin [100 mg/m2, day 1] and fluorouracil [800 mg/m2 daily, days 1-5]), followed by chemoradiotherapy. Main Outcomes and Measures: The primary end point was failure-free survival in the intention-to-treat population. Secondary end points included distant metastasis-free survival, locoregional relapse-free survival, overall survival, tumor response, and safety. Results: Overall, 238 eligible patients (187 men [78.6%]; median age, 45 years [range, 18-65 years]) were randomly assigned to receive TPC (n = 118) or PF (n = 120). The median follow-up duration was 48.4 months (IQR, 39.6-53.3 months). Failure-free survival at 3 years was 83.5% (95% CI, 77.0%-90.6%) in the TPC group and 68.9% (95% CI, 61.1%-77.8%) in the PF group (stratified hazard ratio [HR] for recurrence or death, 0.47; 95% CI, 0.28-0.79; P = .004). Induction with the TPC regimen resulted in a significant reduction in the risk of distant metastases (stratified HR, 0.49 [95% CI, 0.24-0.98]; P = .04) and locoregional recurrence (stratified HR, 0.40 [95% CI, 0.18-0.93]; P = .03) compared with the PF regimen. However, there was no effect on early overall survival (stratified HR, 0.45 [95% CI, 0.17-1.18]; P = .10). The incidences of grade 3 to 4 acute adverse events and late-onset toxicities were 57.6% (n = 68) and 13.6% (16 of 118), respectively, in the TPC group and 65.8% (n = 79) and 17.9% (21 of 117), respectively, in the PF group. One treatment-related death occurred in the PF group. Conclusions and Relevance: This randomized clinical trial found that induction chemotherapy with 2 cycles of TPC for patients with stage IVA to IVB nasopharyngeal carcinoma improved failure-free survival compared with 2 cycles of PF, with no increase in the toxicity profile. Trial Registration: ClinicalTrials.gov Identifier: NCT02940925.


Assuntos
Quimioterapia de Indução , Neoplasias Nasofaríngeas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Capecitabina/efeitos adversos , Quimiorradioterapia/efeitos adversos , Cisplatino/uso terapêutico , Fluoruracila , Humanos , Quimioterapia de Indução/efeitos adversos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Paclitaxel/efeitos adversos
6.
Elife ; 112022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35129439

RESUMO

Olfactory information is encoded in lateral entorhinal cortex (LEC) by two classes of layer 2 (L2) principal neurons: fan and pyramidal cells. However, the functional properties of L2 cells and how they contribute to odor coding are unclear. Here, we show in awake mice that L2 cells respond to odors early during single sniffs and that LEC is essential for rapid discrimination of both odor identity and intensity. Population analyses of L2 ensembles reveal that rate coding distinguishes odor identity, but firing rates are only weakly concentration dependent and changes in spike timing can represent odor intensity. L2 principal cells differ in afferent olfactory input and connectivity with inhibitory circuits and the relative timing of pyramidal and fan cell spikes provides a temporal code for odor intensity. Downstream, intensity is encoded purely by spike timing in hippocampal CA1. Together, these results reveal the unique processing of odor information by LEC subcircuits and highlight the importance of temporal coding in higher olfactory areas.


Assuntos
Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Odorantes , Olfato/fisiologia , Humanos
7.
Elife ; 112022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179483

RESUMO

Cannabidiol (CBD), a chemical found in the Cannabis sativa plant, is a clinically effective antiepileptic drug whose mechanism of action is unknown. Using a fluorescence-based thallium flux assay, we performed a large-scale screen and found enhancement of flux through heterologously expressed human Kv7.2/7.3 channels by CBD. Patch-clamp recordings showed that CBD acts at submicromolar concentrations to shift the voltage dependence of Kv7.2/7.3 channels in the hyperpolarizing direction, producing a dramatic enhancement of current at voltages near -50 mV. CBD enhanced native M-current in mouse superior cervical ganglion starting at concentrations of 30 nM and also enhanced M-current in rat hippocampal neurons. The potent enhancement of Kv2/7.3 channels by CBD may contribute to its effectiveness as an antiepileptic drug by reducing neuronal hyperexcitability.


Assuntos
Canabidiol/farmacologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Neurônios/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Neurônios/efeitos dos fármacos , Ratos
8.
Nat Neurosci ; 25(2): 168-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931070

RESUMO

Bacterial products can act on neurons to alter signaling and function. In the present study, we found that dorsal root ganglion (DRG) sensory neurons are enriched for ANTXR2, the high-affinity receptor for anthrax toxins. Anthrax toxins are composed of protective antigen (PA), which binds to ANTXR2, and the protein cargoes edema factor (EF) and lethal factor (LF). Intrathecal administration of edema toxin (ET (PA + EF)) targeted DRG neurons and induced analgesia in mice. ET inhibited mechanical and thermal sensation, and pain caused by formalin, carrageenan or nerve injury. Analgesia depended on ANTXR2 expressed by Nav1.8+ or Advillin+ neurons. ET modulated protein kinase A signaling in mouse sensory and human induced pluripotent stem cell-derived sensory neurons, and attenuated spinal cord neurotransmission. We further engineered anthrax toxins to introduce exogenous protein cargoes, including botulinum toxin, into DRG neurons to silence pain. Our study highlights interactions between a bacterial toxin and nociceptors, which may lead to the development of new pain therapeutics.


Assuntos
Antraz , Bacillus anthracis , Toxinas Bacterianas , Células-Tronco Pluripotentes Induzidas , Animais , Antraz/microbiologia , Antraz/terapia , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Gânglios Espinais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Nociceptores/metabolismo , Dor , Receptores de Peptídeos/metabolismo
9.
J Neurosci ; 41(30): 6371-6387, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34131037

RESUMO

The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to have analgesic effects in animal studies but little is known about its mechanism of action. We examined the effects of CBD on intrinsic excitability of primary pain-sensing neurons. Studying acutely dissociated capsaicin-sensitive mouse DRG neurons at 37°C, we found that CBD effectively inhibited repetitive action potential firing, from 15-20 action potentials evoked by 1 s current injections in control to 1-3 action potentials with 2 µm CBD. Reduction of repetitive firing was accompanied by a reduction of action potential height, widening of action potentials, reduction of the afterhyperpolarization, and increased propensity to enter depolarization block. Voltage-clamp experiments showed that CBD inhibited both TTX-sensitive and TTX-resistant (TTX-R) sodium currents in a use-dependent manner. CBD showed strong state-dependent inhibition of TTX-R channels, with fast binding to inactivated channels during depolarizations and slow unbinding on repolarization. CBD alteration of channel availability at various voltages suggested that CBD binds especially tightly [Kd (dissociation constant), ∼150 nm] to the slow inactivated state of TTX-R channels, which can be substantially occupied at voltages as negative as -40 mV. Remarkably, CBD was more potent in inhibiting TTX-R channels and inhibiting action potential firing than the local anesthetic bupivacaine. We conclude that CBD might produce some of its analgesic effects by direct effects on neuronal excitability, with tight binding to the slow inactivated state of Nav1.8 channels contributing to effective inhibition of repetitive firing by modest depolarizations.SIGNIFICANCE STATEMENT Cannabidiol (CBD) has been shown to inhibit pain in various rodent models, but the mechanism of this effect is unknown. We describe the ability of CBD to inhibit repetitive action potential firing in primary nociceptive neurons from mouse dorsal root ganglia and analyze the effects on voltage-dependent sodium channels. We find that CBD interacts with TTX-resistant sodium channels in a state-dependent manner suggesting particularly tight binding to slow inactivated states of Nav1.8 channels, which dominate the overall inactivation of Nav1.8 channels for small maintained depolarizations from the resting potential. The results suggest that CBD can exert analgesic effects in part by directly inhibiting repetitive firing of primary nociceptors and suggest a strategy of identifying compounds that bind selectively to slow inactivated states of Nav1.8 channels for developing effective analgesics.


Assuntos
Analgésicos/farmacologia , Canabidiol/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Nociceptores/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Gânglios Espinais , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.8/efeitos dos fármacos , Nociceptores/metabolismo
10.
Brain Behav Immun ; 89: 518-523, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32827701

RESUMO

Individuals with autism spectrum disorder (ASD) have been found to have a variety of sensory processing deficits. Here we report that maternal immune activation, a known factor for ASD, alters visual acuity in the offspring mice. By intraperitoneally injecting polyinosinic-polycytidylic acid (polyI:C) to induce maternal immune activation during embryonic days 10 to 14, we found that polyI:C treatment impairs visual acuity in young adult offspring mice as examined by their optomotor responses. Concurrently, polyI:C treatment suppresses retinogeniculate axon elimination, resulting in a high fraction of weak optical fibers innervating the relay neurons in the visual thalamus. The results link in-utero maternal inflammation to defective optical fiber pruning and arrested developmental strengthening of single optic fibers which may underlie impaired visual acuity.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal , Feminino , Camundongos , Plasticidade Neuronal , Gravidez , Acuidade Visual
11.
Elife ; 82019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31765298

RESUMO

Voltage-dependent sodium and calcium channels in pain-initiating nociceptor neurons are attractive targets for new analgesics. We made a permanently charged cationic derivative of an N-type calcium channel-inhibitor. Unlike cationic derivatives of local anesthetic sodium channel blockers like QX-314, this cationic compound inhibited N-type calcium channels more effectively with extracellular than intracellular application. Surprisingly, the compound is also a highly effective sodium channel inhibitor when applied extracellularly, producing more potent inhibition than lidocaine or bupivacaine. The charged inhibitor produced potent and long-lasting analgesia in mouse models of incisional wound and inflammatory pain, inhibited release of the neuropeptide calcitonin gene-related peptide (CGRP) from dorsal root ganglion neurons, and reduced inflammation in a mouse model of allergic asthma, which has a strong neurogenic component. The results show that some cationic molecules applied extracellularly can powerfully inhibit both sodium channels and calcium channels, thereby blocking both nociceptor excitability and pro-inflammatory peptide release.


Assuntos
Canais de Cálcio Tipo N/genética , Inflamação Neurogênica/tratamento farmacológico , Dor/tratamento farmacológico , Canais de Sódio/genética , Animais , Bupivacaína/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Humanos , Lidocaína/análogos & derivados , Lidocaína/farmacologia , Camundongos , Inflamação Neurogênica/genética , Inflamação Neurogênica/patologia , Nociceptores , Dor/genética , Dor/patologia , Bloqueadores dos Canais de Sódio/farmacologia
12.
J Contam Hydrol ; 215: 1-10, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29935809

RESUMO

Seawater intrusion and brine water/freshwater interaction have significantly affected agriculture, industry and public water supply at Laizhou Bay, Shandong Province, China. In this study, a two-dimensional SEAWAT model is developed to simulate the seawater intrusion to coastal aquifers and brine water/fresh water interaction in the south of Laizhou Bay. This model is applied to predict the seawater intrusion and brine water/freshwater interface development in the coming years. The model profile is perpendicular to the coastal line with two interfaces, freshwater-saline water interface near the shore and inland brine water-saline water-seawater interface. The hydrogeological parameters in the SEAWAT-2000 model are calibrated by the head and salinity measurements. The precipitation infiltration coefficient, boundary conditions and thicknesses of aquifers are studied in a sensitivity analysis. The predicted results indicate that equivalent freshwater head in shallow freshwater-saline water area will decline 2.0 m by the end of the forecasting period, caused by groundwater over-pumping for farmland irrigation. The groundwater head in the brine-saline water area will also decrease about 1.8 m by the end of forecasting period, caused by excessive brine mining. Salinity finally decreases below 105 g/L in the brine area, but increases in other areas and contaminates fresh groundwater resources.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Água do Mar , Abastecimento de Água , Baías , China , Água Doce , Salinidade , Sais , Água
13.
Ground Water ; 56(3): 491-500, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29194619

RESUMO

The continuous Galerkin finite element method is commonly considered locally nonconservative because a single element with fluxes computed directly from its potential distribution is unable to conserve its mass and fluxes across edges that are discontinuous. Some literature sources have demonstrated that the continuous Galerkin method can be locally conservative with postprocessed fluxes. This paper proposes the concept of a direct conservative domain (DCD), which could conserve mass when fluxes are computed directly from the potential distribution. Also presented here is a method for modifying the advection fluxes to obtain different conservative domains from the DCDs. Furthermore, DCDs are used to analyze the local conservation of several postprocessing algorithms, for which DCDs provide the theoretical basis. The local conservation of DCDs and the proposed method are illustrated and verified by using a hypothetical 2-D model.


Assuntos
Água Subterrânea , Modelos Teóricos , Algoritmos
14.
Environ Sci Pollut Res Int ; 24(26): 21073-21090, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28730358

RESUMO

The aquifer in the coastal area of the Laizhou Bay is affected by salinization processes related to intense groundwater exploitation for brine resource and for agriculture irrigation during the last three decades. As a result, the dynamic balances among freshwater, brine, and seawater have been disturbed and the quality of groundwater has deteriorated. To fully understand the groundwater chemical distribution and evolution in the regional aquifers, hydrogeochemical and isotopic studies have been conducted based on the water samples from 102 observation wells. Groundwater levels and salinities in four monitoring wells are as well measured to inspect the general groundwater flow and chemical patterns and seasonal variations. Chemical components such as Na+, K+, Ca2+, Mg2+, Sr2+, Cl-, SO42-, HCO3-, NO3-, F-, and TDS during the same period are analyzed to explore geochemical evolution, water-rock interactions, sources of salt, nitrate, and fluoride pollution in fresh, brackish, saline, and brine waters. The decreased water levels without typical seasonal variation in the southeast of the study area confirm an over-exploitation of groundwater. The hydrogeochemical characteristics indicate fresh-saline-brine-saline transition pattern from inland to coast where evaporation is a vital factor to control the chemical evolution. The cation exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. Meanwhile, isotopic data indicate that the brine in aquifers was either originated from older meteoric water with mineral dissolution and evaporation or repeatedly evaporation of retained seawater with fresher water recharge and mixing in geological time. Groundwater suitability for drinking is further evaluated according to water quality standard of China. Results reveal high risks of nitrate and fluoride contamination. The elevated nitrate concentration of 560 mg/L, which as high as 28 times of the standard content in drinking water is identified in the south region. In addition, the nitrate and ammonia data of the Wei River suggests decreasing nitrification rate in the study area from inland to estuary. High fluoride concentration, larger than 1 mg/L, is also detected in an area of about 50% of the study region. The saltwater intrusion is analyzed to be responsible for part of dissolution of minerals containing fluoride. Therefore, water treatment before drinking is needed in urgent to reduce the health expose risk.


Assuntos
Baías/química , Monitoramento Ambiental , Água Subterrânea/química , China , Fluoretos/análise , Água Doce/química , Nitratos/análise , Rios/química , Salinidade , Sais , Água do Mar/química , Poluentes Químicos da Água/análise , Qualidade da Água , Poços de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...