Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37642180

RESUMO

DNA methyltransferase (DNMT) is a conserved family of Cytosine methylases, which plays a crucial role in the regulation of Epigenetics. They have been considered promising therapeutic targets for cancer. Among the DNMT family, mutations in the DNMT3A subtype are particularly important in hematologic malignancies. The development of specific DNMT3A subtype inhibitors to validate the therapeutic potential of DNMT3A in certain diseases is a significant task. In this review, we summarized the small molecule inhibitors of DNMT3A discovered in recent years and their inhibitory activities, and classified them based on their inhibitory mechanisms.

2.
Nanomaterials (Basel) ; 12(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35808132

RESUMO

Ag-Co films with ultra-high resistivity were prepared on polyimide by magnetron sputtering. The effect of Co content and annealing temperatures on the resistivity and microstructure of Ag-Co films has been thoroughly investigated and the relation between resistivity and microstructure has been discussed. Results show that thicker Ag-Co films without annealing present lower resistivity due to better crystallinity. However, thin Ag-Co films (≤21 nm) annealed at 360 °C present ultra-high film resistivity because of the formation of diffusion pits on the film surface which blocks the transmission of electrons in films to increase film resistivity. Inversely, the resistivity of thick Ag-Co films (≥45 nm) annealed at 360 °C is much less than that annealed at lower than 260 °C owing to no diffusion pits. Furthermore, the addition of Co inhibits the growth of Ag grains and limits the migration of electrons in Ag-Co films further, also resulting in the increase of Ag-Co films' resistivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...