Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38998423

RESUMO

Group-III nitrides have transformed solid-state lighting and are strategically positioned to revolutionize high-power and high-frequency electronics. To drive this development forward, a deep understanding of fundamental material properties, such as charge carrier behavior, is essential and can also unveil new and unforeseen applications. This underscores the necessity for novel characterization tools to study group-III nitride materials and devices. The optical Hall effect (OHE) emerges as a contactless method for exploring the transport and electronic properties of semiconductor materials, simultaneously offering insights into their dielectric function. This non-destructive technique employs spectroscopic ellipsometry at long wavelengths in the presence of a magnetic field and provides quantitative information on the charge carrier density, sign, mobility, and effective mass of individual layers in multilayer structures and bulk materials. In this paper, we explore the use of terahertz (THz) OHE to study the charge carrier properties in group-III nitride heterostructures and bulk material. Examples include graded AlGaN channel high-electron-mobility transistor (HEMT) structures for high-linearity devices, highlighting the different grading profiles and their impact on the two-dimensional electron gas (2DEG) properties. Next, we demonstrate the sensitivity of the THz OHE to distinguish the 2DEG anisotropic mobility parameters in N-polar GaN/AlGaN HEMTs and show that this anisotropy is induced by the step-like surface morphology. Finally, we present the temperature-dependent results on the charge carrier properties of 2DEG and bulk electrons in GaN with a focus on the effective mass parameter and review the effective mass parameters reported in the literature. These studies showcase the capabilities of the THz OHE for advancing the understanding and development of group-III materials and devices.

2.
J Biomater Appl ; 36(10): 1873-1881, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227102

RESUMO

Anti-inflammation and bone regeneration are the two major goals of periodontal therapy. We have demonstrated that chitosan (CS)/polyvinyl alcohol (PVA)/graphene oxide (GO)/astaxanthin (ASTA) nanofibers membranes prepared by electrospinning had favorable micro-morphology, good mechanical properties, and no cytotoxicity. In this study, CS/PVA/GO/ASTA nanofibers membranes were prepared to modulate both inflammatory response and osteogenic induction in vitro study. When the nanofibers membranes were co-cultured with RAW264.7 cells, glycoprotein nonmetastatic melanoma protein in the cells was highly expressed and RAW264.7 cells were polarized to M2 phenotype at the same time. In addition, following stimulation with nanofibers membranes, the messenger RNA (mRNA) and protein levels of Osteocalcin (OCN) and Runx2 in Bone marrow mesenchymal stem cells (BMSCs) were highly expressed. Taken together, these results suggested CS/PVA/GO/ASTA nanofibers membranes may promote the dissipation of inflammation and stimulate the differentiation of BMSCs into osteoblasts.


Assuntos
Quitosana , Nanofibras , Anti-Inflamatórios/farmacologia , Grafite , Osteogênese , Álcool de Polivinil , Xantofilas
3.
Tissue Cell ; 74: 101683, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34800878

RESUMO

The phenotypic function of macrophages varies with the local microenvironment. Macrophages play an important role in the development of periodontitis. As one of the sources of GPNMB protein, the phenotype of macrophages is affected by GPNMB expression. In this study, activated macrophages were evaluated by flow cytometry, RT-qPCR and WB, and M2a macrophages had higher GPNMB expression than M0 and M1 macrophages. On this basis, a macrophage model with overexpression of GPNMB was established, and it was observed that GPNMB overexpression promoted the secretion of anti-inflammatory factors by macrophages and inhibited the secretion of pro-inflammatory factors by M1 macrophages.


Assuntos
Regulação da Expressão Gênica , Macrófagos/metabolismo , Glicoproteínas de Membrana/biossíntese , Humanos , Glicoproteínas de Membrana/genética , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...