Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608158

RESUMO

Transferring nanocrystals (NCs) from the laboratory environment toward practical applications has raised new challenges. HgTe appears as the most spectrally tunable infrared colloidal platform. Its low-temperature synthesis reduces the growth energy cost yet also favors sintering. Once coupled to a read-out circuit, the Joule effect aggregates the particles, leading to a poorly defined optical edge and large dark current. Here, we demonstrate that CdS shells bring the expected thermal stability (no redshift upon annealing, reduced tendency to form amalgams, and preservation of photoconduction after an atomic layer deposition process). The electronic structure of these confined particles is unveiled using k.p self-consistent simulations showing a significant exciton binding energy of ∼200 meV. After shelling, the material displays a p-type behavior that favors the generation of photoconductive gain. The latter is then used to increase the external quantum efficiency of an infrared imager, which now reaches 40% while presenting long-term stability.

2.
Nano Lett ; 23(18): 8539-8546, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37712683

RESUMO

Optoelectronic devices rely on conductive layers as electrodes, but they usually introduce optical losses that are detrimental to the device performances. While the use of transparent conductive oxides is established in the visible region, these materials show high losses at longer wavelengths. Here, we demonstrate a photodiode based on a metallic grating acting as an electrode. The grating generates a multiresonant photonic structure over the diode stack and allows strong broadband absorption. The obtained device achieves the highest performances reported so far for a midwave infrared nanocrystal-based detector, with external quantum efficiency above 90%, detectivity of 7 × 1011 Jones at 80 K at 5 µm, and a sub-100 ns time response. Furthermore, we demonstrate that combining different gratings with a single diode stack can generate a bias reconfigurable response and develop new functionalities such as band rejection.

3.
J Chem Phys ; 159(10)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37702357

RESUMO

The plastic flow of ultra-high molecular weight polyethylene (UHMWPE) at a frictional interface, which is critical to the wear behavior, was investigated by reactive molecular dynamics simulations. The UHMWPE substrate was found to experience various deformations during the friction process. First, some polyethylene (PE) chains could detach from the substrate because of their rapid movement. Second, the frequent motion of PE chains also resulted in the intermittent formation and breaking of cavities between intermolecular PE chains. These deformations were more obvious on a surface with a convex protrusion, where the plowing effect exacerbated the cavitation and elastic deformation of PE chains. Correspondingly, the plastic flow in turn reconstructed the convex protrusion by displacing the surface atoms on the Fe slab. The plastic flow of PE chains broke the C-C bonds, and the carbon moieties were then chemically bonded onto the metal surface. A rapid change of atomic charge, hence, happened when the bonds broke. Meanwhile, PE chains release short alkyl radicals gradually after bond breakage, indicating gradual wear of the substrate during friction. This work provides molecular insight into the evolution of interfacial microstructure under plastic flow on a UHMWPE substrate.

4.
Nanoscale ; 15(21): 9440-9448, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158270

RESUMO

As nanocrystal-based devices gain maturity, a comprehensive understanding of their electronic structure is necessary for further optimization. Most spectroscopic techniques typically examine pristine materials and disregard the coupling of the active material to its actual environment, the influence of an applied electric field, and possible illumination effects. Therefore, it is critical to develop tools that can probe device in situ and operando. Here, we explore photoemission microscopy as a tool to unveil the energy landscape of a HgTe NC-based photodiode. We propose a planar diode stack to facilitate surface-sensitive photoemission measurements. We demonstrate that the method gives direct quantification of the diode's built-in voltage. Furthermore, we discuss how it is affected by particle size and illumination. We show that combining SnO2 and Ag2Te as electron and hole transport layers is better suited for extended-short-wave infrared materials than materials with larger bandgaps. We also identify the effect of photodoping over the SnO2 layer and propose a strategy to overcome it. Given its simplicity, the method appears to be of utmost interest for screening diode design strategies.

5.
J Chem Phys ; 158(9): 094702, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889960

RESUMO

Narrow bandgap nanocrystals (NCs) are now used as infrared light absorbers, making them competitors to epitaxially grown semiconductors. However, these two types of materials could benefit from one another. While bulk materials are more effective in transporting carriers and give a high degree of doping tunability, NCs offer a larger spectral tunability without lattice-matching constraints. Here, we investigate the potential of sensitizing InGaAs in the mid-wave infrared throughout the intraband transition of self-doped HgSe NCs. Our device geometry enables the design of a photodiode remaining mostly unreported for intraband-absorbing NCs. Finally, this strategy allows for more effective cooling and preserves the detectivity above 108 Jones up to 200 K, making it closer to cryo-free operation for mid-infrared NC-based sensors.

6.
Materials (Basel) ; 16(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36984214

RESUMO

Nanocrystals' (NCs) band gap can be easily tuned over the infrared range, making them appealing for the design of cost-effective sensors. Though their growth has reached a high level of maturity, their doping remains a poorly controlled parameter, raising the need for post-synthesis tuning strategies. As a result, phototransistor device geometry offers an interesting alternative to photoconductors, allowing carrier density control. Phototransistors based on NCs that target integrated infrared sensing have to (i) be compatible with low-temperature operation, (ii) avoid liquid handling, and (iii) enable large carrier density tuning. These constraints drive the search for innovative gate technologies beyond traditional dielectric or conventional liquid and ion gel electrolytes. Here, we explore lithium-ion glass gating and apply it to channels made of HgTe narrow band gap NCs. We demonstrate that this all-solid gate strategy is compatible with large capacitance up to 2 µF·cm-2 and can be operated over a broad range of temperatures (130-300 K). Finally, we tackle an issue often faced by NC-based phototransistors:their low absorption; from a metallic grating structure, we combined two resonances and achieved high responsivity (10 A·W-1 or an external quantum efficiency of 500%) over a broadband spectral range.

7.
Nano Lett ; 23(4): 1363-1370, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36692377

RESUMO

As the field of nanocrystal-based optoelectronics matures, more advanced techniques must be developed in order to reveal the electronic structure of nanocrystals, particularly with device-relevant conditions. So far, most of the efforts have been focused on optical spectroscopy, and electrochemistry where an absolute energy reference is required. Device optimization requires probing not only the pristine material but also the material in its actual environment (i.e., surrounded by a transport layer and an electrode, in the presence of an applied electric field). Here, we explored the use of photoemission microscopy as a strategy for operando investigation of NC-based devices. We demonstrate that the method can be applied to a variety of materials and device geometries. Finally, we show that it provides direct access to the metal-semiconductor interface band bending as well as the distance over which the gate effect propagates in field-effect transistors.

8.
Nano Lett ; 22(21): 8779-8785, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36190814

RESUMO

While the integration of nanocrystals as an active medium for optoelectronic devices progresses, light management strategies are becoming required. Over recent years, several photonic structures (plasmons, cavities, mirrors, etc.) have been coupled to nanocrystal films to shape the absorption spectrum, tune the directionality, and so on. Here, we explore a photonic equivalent of the acoustic Helmholtz resonator and propose a design that can easily be fabricated. This geometry combines a strong electromagnetic field magnification and a narrow channel width compatible with efficient charge conduction despite hopping conduction. At 80 K, the device reaches a responsivity above 1 A·W-1 and a detectivity above 1011 Jones (3 µm cutoff) while offering a significantly faster time-response than vertical geometry diodes.

9.
J Phys Chem Lett ; 13(30): 6919-6926, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35867700

RESUMO

While HgTe nanocrystals (NCs) in the mid-infrared region have reached a high level of maturity, their far-infrared counterparts remain far less studied, raising the need for an in-depth investigation of the material before efficient device integration can be considered. Here, we explore the effect of temperature and pressure on the structural, spectroscopic, and transport properties of HgTe NCs displaying an intraband absorption at 10 THz. The temperature leads to a very weak modulation of the spectrum as opposed to what was observed for strongly confined HgTe NCs. HgTe NC films present ambipolar conduction with a clear prevalence of electron conduction as confirmed by transistor and thermoelectric measurements. Under the application of pressure, the material undergoes phase transitions from the zinc blende to cinnabar phase and later to the rock salt phase which we reveal using joint X-ray diffraction and infrared spectroscopy measurements. We discuss how the pressure existence domain of each phase is affected by the particle size.

10.
JMIR Form Res ; 6(1): e29644, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076402

RESUMO

BACKGROUND: Maternal and child health (MCH)-related mobile apps are becoming increasingly popular among pregnant women; however, few apps have demonstrated that they lead to improvements in pregnancy outcomes. OBJECTIVE: This study aims to investigate the use of MCH apps among pregnant women in China and explore associations with pregnancy outcomes. METHODS: A retrospective study was conducted at 6 MCH hospitals in northern China. Women who delivered a singleton baby at >28 weeks' gestation at the study hospitals were sequentially recruited from postnatal wards from October 2017 to January 2018. Information was collected on the women's self-reported MCH app use during their pregnancy, along with clinical outcomes. Women were categorized as nonusers of MCH apps and users (further divided into intermittent users and continuous users). The primary outcome was a composite adverse pregnancy outcome (CAPO) comprising preterm birth, birth weight <2500 g, birth defects, stillbirth, and neonatal asphyxia. The association between app use and CAPO was explored using multivariable logistic analysis. RESULTS: The 1850 participants reported using 127 different MCH apps during pregnancy. App use frequency was reported as never, 24.7% (457/1850); intermittent, 47.4% (876/1850); and continuous, 27.9% (517/1850). Among app users, the most common reasons for app use were health education (1393/1393, 100%), self-monitoring (755/1393, 54.2%), and antenatal appointment reminders (602/1393, 43.2%). Nonusers were older, with fewer years of education, lower incomes, and higher parity (P<.01). No association was found between any app use and CAPO (6.8% in nonusers compared with 6.3% in any app users; odds ratio 0.77, 95% CI 0.48-1.25). CONCLUSIONS: Women in China access a large number of different MCH apps, with social disparities in access and frequency of use. Any app use was not found to be associated with improved pregnancy outcomes, highlighting the need for rigorous development and testing of apps before recommendation for use in clinical settings.

11.
Virol J ; 18(1): 22, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461581

RESUMO

BACKGROUND: Oxidative stress is an important pathogenic factor in influenza A virus infection. It has been found that reactive oxygen species induced by the H9N2 influenza virus is associated with viral replication. However, the mechanisms involved remain to be elucidated. METHODS: In this study, the role of autophagy was investigated in H9N2 influenza virus-induced oxidative stress and viral replication in A549 cells. Autophagy induced by H9N2 was inhibited by an autophagy inhibitor or RNA interference, the autophagy level, viral replication and the presence of oxidative stress were detected by western blot, TCID50 assay, and Real-time PCR. Then autophagy and oxidative stress were regulated, and viral replication was determined. At last, the Akt/TSC2/mTOR signaling pathways was detected by western blot. RESULTS: Autophagy was induced by the H9N2 influenza virus and the inhibition of autophagy reduced the viral titer and the expression of nucleoprotein and matrix protein. The blockage of autophagy suppressed the H9N2 virus-induced increase in the presence of oxidative stress, as evidenced by decreased reactive oxygen species production and malonaldehyde generation, and increased superoxide dismutase 1 levels. The changes in the viral titer and NP mRNA level caused by the antioxidant, N-acetyl-cysteine (NAC), and the oxidizing agent, H2O2, confirmed the involvement of oxidative stress in the control of viral replication. NAC plus transfection with Atg5 siRNA significantly reduced the viral titer and oxidative stress compared with NAC treatment alone, which confirmed that autophagy was involved in the replication of H9N2 influenza virus by regulating oxidative stress. Our data also revealed that autophagy was induced by the H9N2 influenza virus through the Akt/TSC2/mTOR pathway. The activation of Akt or the inhibition of TSC2 suppressed the H9N2 virus-induced increase in the level of LC3-II, restored the decrease in the expression of phospho-pAkt, phospho-mTOR and phospho-pS6 caused by H9N2 infection, suppressed the H9N2-induced increase in the presence of oxidative stress, and resulted in a decrease in the viral titer. CONCLUSION: Autophagy is involved in H9N2 virus replication by regulating oxidative stress via the Akt/TSC2/mTOR signaling pathway. Thus, autophagy maybe a target which may be used to improve antiviral therapeutics.


Assuntos
Células Epiteliais Alveolares/virologia , Autofagia/genética , Regulação da Expressão Gênica , Vírus da Influenza A Subtipo H9N2/fisiologia , Infecções por Orthomyxoviridae/veterinária , Estresse Oxidativo/genética , Replicação Viral , Células A549 , Animais , Humanos , Vírus da Influenza A Subtipo H9N2/patogenicidade , Transdução de Sinais , Suínos
12.
ACS Appl Mater Interfaces ; 11(41): 38347-38352, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31550122

RESUMO

Based on arrays of Au seeds fabricated with atomic force microscopy (AFM) nanoxerography, the seeded growth of gold nanoparticles (Au NPs) on surface is achieved. The size evolution of Au NPs in each spot is tracked by in situ AFM and SEM images because each spot can be easily localized in the array system. The extinction microspectra extracted in real time with enhanced signals and red-shift can further monitor the increasing size of Au NPs. As a powerful platform, AFM nanoxerography makes it easy to tune the spot size and the intervals among spots in the Au NP arrays without preparing a template. It also allows for fabricating arbitrary patterns including various symbols and graphs. More interestingly, the in situ growth of Au NPs offers an approach to decreasing the interparticle distance, and thus forming closely interconnected Au nanowire assembly, exhibiting immense potential in the nanoelectronic system.

13.
Int Immunopharmacol ; 74: 105737, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31288152

RESUMO

Influenza A virus usually leads to economic loss to breeding farms and pose a serious threat to human health. Virus infecting tissues directly and influenza virus-induced excessive production of inflammatory factors play the key role in pathogenesis of the disease, but the mechanism is not well clarified. Here, the role of autophagy was investigated in H9N2 influenza virus-triggered inflammation. The results showed that autophagy was induced by H9N2 virus in A549 cells and in mice. Inhibiting autophagy by an autophagy inhibitor (3-methyladenine, 3-MA) or knockdown of Atg5(autophagy-related gene) by Atg5 siRNA significantly suppressed H9N2 virus replication, H9N2 virus-triggered inflammatory cytokines and chemokines, including IL-1ß, TNF-α, IL-8, and CCL5 in vitro and in vivo, and suppressed H9N2 virus-triggered acute lung injury as indicated as accumulative mortality of mice, inflammatory cellular infiltrate and interstitial edema, thickening of the alveolar walls in mice lung tissues, increased inflammatory cytokines and chemokines, increased W/D ratio in mice. Moreover, autophagy mediated inflammatory responses through Akt-mTOR, NF-κB and MAPKs signaling pathways. Our data showed that autophagy was essential in H9N2 influenza virus-triggered inflammatory responses, and autophagy could be target to treat influenza virus-caused lung inflammation.


Assuntos
Lesão Pulmonar Aguda/imunologia , Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Células A549 , Animais , Proteína 5 Relacionada à Autofagia/genética , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno/genética , Transdução de Sinais
14.
J Sep Sci ; 42(6): 1202-1209, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30653252

RESUMO

A valid and reliable method was established to separate six compounds from pigeon pea leaves via elution-extrusion counter-current chromatography. A solvent system composed of n-hexane/methanol/formic acid aqueous solution with pH = 3 (10:6:4, v/v) was screened to achieve satisfactory isolation from the ethanol extract of pigeon pea leaves. Four compounds, 9.2 mg of compound 1 (96.8%), 3.2 mg of 2 (88.0%), 6.2 mg of 4 (94.2%) and 25.2 mg of 5 (94.2%), were obtained by conventional elution from 100 mg of the precipitation fraction, respectively. Two compounds, 14.4 mg of 3 (96.3%) and 28.1 mg of 6 (96.6%), with high K values were obtained by the subsequent extrusion procedure. The compounds 1-6 were identified as 3-methoxy-5-(2-phenylethenyl)-phenol, pinostrobin chalcone, pinostrobin, 2-hydroxy-4-methoxy-6-(2-phenylvinyl)-benzoic acid, longistylin C and cajaninstilbene acid by quadrupole time-of-flight mass spectrometry, and 1 H and 13 C NMR spectroscopy. The in vitro antiproliferation activities of compounds 1, 5 and 6 against human hepatoma cell were evaluated and the half-maximum inhibitory concentrations were acquired.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ácido Benzoico/farmacologia , Flavanonas/farmacologia , Fenóis/farmacologia , Pisum sativum/química , Salicilatos/farmacologia , Estilbenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Ácido Benzoico/química , Ácido Benzoico/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Distribuição Contracorrente , Ensaios de Seleção de Medicamentos Antitumorais , Flavanonas/química , Flavanonas/isolamento & purificação , Células Hep G2 , Humanos , Estrutura Molecular , Fenóis/química , Fenóis/isolamento & purificação , Folhas de Planta/química , Salicilatos/química , Salicilatos/isolamento & purificação , Estilbenos/química , Estilbenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...