Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 7(5): e0024822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040022

RESUMO

Understanding the fitness costs associated with plasmid carriage is a key to better understanding the mechanisms of plasmid maintenance in bacteria. In the current work, we performed multiple serial passages (63 days, 627.8 generations) to identify the compensatory mechanisms that Salmonella enterica serovar Typhimurium ATCC 14028 utilized to maintain the multidrug-resistant (MDR) IncHI2 plasmid pJXP9 in the presence and absence of antibiotic selection. The plasmid pJXP9 was maintained for hundreds of generations even without drug exposure. Endpoint evolved (the endpoint of evolution) S. Typhimurium bearing evolved plasmids displayed decreased growth lag times and a competitive advantage over ancestral pJXP9 plasmid-carrying ATCC 14028 strains. Genomic and transcriptomic analyses revealed that the fitness costs of carrying pJXP9 were derived from both specific plasmid genes and particularly the MDR regions and conjugation transfer region I and conflicts resulting from chromosome-plasmid gene interactions. Correspondingly, plasmid deletions of these regions could compensate for the fitness cost that was due to the plasmid carriage. The deletion extent and range of large fragments on the evolved plasmids, as well as the trajectory of deletion mutation, were related to the antibiotic treatment conditions. Furthermore, it is also adaptive evolution that chromosomal gene mutations and altered mRNA expression correlated with changed physiological functions of the bacterium, such as decreased flagellar motility, increased oxidative stress, and fumaric acid synthesis but increased Cu resistance in a given niche. Our findings indicated that plasmid maintenance evolves via a plasmid-bacterium adaptative evolutionary process that is a trade-off between vertical and horizontal transmission costs along with associated alterations in host bacterial physiology. IMPORTANCE The current idea that compensatory evolution processes can account for the "plasmid paradox" phenomenon associated with the maintenance of large costly plasmids in host bacteria has attracted much attention. Although many compensatory mutations have been discovered through various plasmid-host bacterial evolution experiments, the basis of the compensatory mechanisms and the nature of the bacteria themselves to address the fitness costs remain unclear. In addition, the genetic backgrounds of plasmids and strains involved in previous research were limited and clinical drug resistance such as the poorly understood compensatory evolution among clinically dominant multidrug-resistant plasmids or clones was rarely considered. The IncHI2 plasmid is widely distributed in Salmonella Typhimurium and plays an important role in the emergence and rapid spread of its multidrug resistance. In this study, the predominant multidrug-resistant IncHI2 plasmid pJXP9 and the standard Salmonella Typhimurium ATCC 14028 bacteria were used for evolution experiments under laboratory conditions. Our findings indicated that plasmid maintenance through experimental evolution of plasmid-host bacteria is a trade-off between increasing plasmid vertical transmission and impairing its horizontal transmission and bacterial physiological phenotypes, in which compensatory mutations and altered chromosomal expression profiles collectively contribute to alleviating plasmid-borne fitness cost. These results provided potential insights into understanding the relationship of coexistence between plasmids encoding antibiotic resistance and their bacterial hosts and provided a clue to the adaptive forces that shaped the evolution of these plasmids within bacteria and to predicting the evolution trajectory of antibiotic resistance.


Assuntos
Salmonella enterica , Salmonella typhimurium , Salmonella typhimurium/genética , Sorogrupo , Plasmídeos/genética , Salmonella enterica/genética , Antibacterianos/farmacologia
2.
Front Microbiol ; 13: 846954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464949

RESUMO

IncHI2 plasmids, possessing high flexibility and genetic plasticity, play a vital role in the acquisition and transmission of resistance determinants. Polymorphic mobile genetic elements (MGEs) generated by a chromosomally integrated IncHI2 plasmid in an individual Salmonella isolate have not yet been detected, and the mechanisms of the formation, excision, and dynamic evolution of a multidrug-resistant chromosomally integrated plasmid (MRCP) have remained obscure. Herein, we identified a 260-kb bla CTX-M-55-qnrS1-bearing IncHI2 plasmid within a Salmonella Muenster strain. Plenty of heterogeneous MGEs (new Escherichia coli chromosomally integrated plasmid or circular plasmids with different profiles) were yielded when this MRCP was conjugated into E. coli J53 with a transfer frequency of 10-4-10-5 transconjugants per donor. A bioinformatic analysis indicated that replicative transposition and homologous recombination of IS26 elements were particularly active, and the truncated Tn1721 also played a vital role in the formation of MRCP offspring. More importantly, when released from the chromosome, MRCP could capture and co-transfer adjacent chromosomal segments to form larger plasmid progeny than itself. Stability and growth kinetics assays showed that the biological characteristics of MRCP progeny were differentiated. This study provides an insight into a flexible existence of MRCP. The conversion between vertical and horizontal transmission endowed MRCP with genetic stability as a chromosomal coding structure and transferability as extra-chromosomal elements. This alternation may accelerate the acquisition and persistence of antibiotic resistance of clinical pathogens and enhance their ability to respond to adverse environments, which poses a great challenge to the traditional antibiotic treatment.

3.
Front Microbiol ; 12: 663731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025618

RESUMO

Development of fluoroquinolone resistance can involve several mechanisms that include chromosomal mutations in genes (gyrAB and parCE) encoding the target bacterial topoisomerase enzymes, increased expression of the AcrAB-TolC efflux system, and acquisition of transmissible quinolone-resistance genes. In this study, 176 Salmonella isolates from animals with a broad range of ciprofloxacin MICs were collected to analyze the contribution of these different mechanisms to different phenotypes. All isolates were classified according to their ciprofloxacin susceptibility pattern into five groups as follows: highly resistant (HR), resistant (R), intermediate (I), reduced susceptibility (RS), and susceptible (S). We found that the ParC T57S substitution was common in strains exhibiting lowest MICs of ciprofloxacin while increased MICs depended on the type of GyrA mutation. The ParC T57S substitution appeared to incur little cost to bacterial fitness on its own. The presence of PMQR genes represented an route for resistance development in the absence of target-site mutations. Switching of the plasmid-mediated quinolone resistance (PMQR) gene location from a plasmid to the chromosome was observed and resulted in decreased ciprofloxacin susceptibility; this also correlated with increased fitness and a stable resistance phenotype. The overexpression of AcrAB-TolC played an important role in isolates with small decreases in susceptibility and expression was upregulated by MarA more often than by RamA. This study increases our understanding of the relative importance of several resistance mechanisms in the development of fluoroquinolone resistance in Salmonella from the food chain.

4.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33674440

RESUMO

We investigated the prevalence and transmission of NDM-producing Enterobacteriaceae in fecal samples of geese and environmental samples from a goose farm in southern China. The samples were cultivated on MacConkey agar plates supplemented with meropenem. Individual colonies were examined for blaNDM, and blaNDM-positive bacteria were characterized based on whole-genome sequencing (WGS) data from the Illumina and Oxford Nanopore Technologies (ONT) platforms. Of 117 samples analyzed, the carriage rates for New Delhi metallo-ß-lactamase (NDM)-positive Enterobacteriaceae were 47.1, 18, and 50% in geese, inanimate environments (sewage, soil, fodder, and dust), and mouse samples, respectively. Two variants (blaNDM-1 and blaNDM-5, in 4 and 40 isolates, respectively) were found among 44 blaNDM-positive Enterobacteriaceae; these variants belonged to eight species, and Escherichia coli was the most prevalent (50%). WGS analysis revealed that blaNDM coexisted with diverse antibiotic resistance genes (ARGs). Population structure analysis showed that most E. coli and Enterobacter sp. isolates were highly heterogeneous, while most Citrobacter sp. and P. stuartii isolates possessed extremely high genetic similarities. In addition, blaNDM-5-positive ST4358/ST48 E. coli isolates were found to be clonally spread between geese and the environment and were highly genetically similar to those reported from ducks, farm environments, and humans in China. Plasmid analysis indicated that IncX3 pHNYX644-1-like (n = 40) and untypeable pM2-1-like plasmids (n = 4) mediated blaNDM spread. pM2-1-like plasmids possessed diverse ARGs, including blaNDM-1, the arsenical and mercury resistance operons, and the maltose operon. Our findings revealed that the goose farm is a reservoir for NDM-positive Enterobacteriaceae The blaNDM contamination of wild mice and the novel pM2-1-like plasmid described here likely adds to the risk for dissemination of blaNDM and associated resistance genes.IMPORTANCE Carbapenem-resistant bacteria, in particular NDM-producing Enterobacteriaceae, have become a great threat to global public. These bacteria have been found not only in hospital and community environments but also among food animal production chains, which are recognized as reservoirs for NDM-producing Enterobacteriaceae However, the dissemination of NDM-producing bacteria in waterfowl farms has been less well explored. Our study demonstrates that the horizontal spread of blaNDM-carrying plasmids and the partial clonal spread of blaNDM-positive Enterobacteriaceae contribute to the widespread contamination of blaNDM in the goose farm ecosystem, including mice. Furthermore, we found a novel and transferable blaNDM-1-carrying multidrug resistance (MDR) plasmid that possessed multiple environmental adaptation-related genes. The outcomes of this study contribute to a better understanding of the prevalence and transmission of blaNDM-carrying Enterobacteriaceae among diverse niches in the farm ecosystem.


Assuntos
Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/isolamento & purificação , Gansos/microbiologia , Doenças das Aves Domésticas/microbiologia , beta-Lactamases/genética , Animais , Antibacterianos/farmacologia , China , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/veterinária , Fazendas , Fezes/microbiologia , Fômites/microbiologia , Camundongos , Testes de Sensibilidade Microbiana
5.
Artigo em Inglês | MEDLINE | ID: mdl-31712202

RESUMO

We identified fosA3 at a rate of 2.6% in 310 Salmonella isolates from food animals in Guangdong province, China. The fosA3 gene was genetically linked to diverse antibiotic resistance genes (ARGs), including mcr-1, blaCTX-M-14/55, oqxAB, and rmtB These gene combinations were embedded in heterogeneous fosA3-containing multidrug resistance regions on the transferable ST3-IncHI2 and F33:A-:B- plasmids and the chromosome. This indicated a great flexibility of fosA3 cotransmission with multiple important ARGs among Salmonella species.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Fosfomicina/farmacologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plasmídeos/genética , Infecções por Salmonella/epidemiologia , Salmonella typhimurium/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...