Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 32(10): 3023-32, 2011 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-22279919

RESUMO

Experiments were conducted under open-top-chambers conditions to assess the photosynthetic responses of wheat plants (Triticum aestivum L., YangMail6) to supplemental UV-B radiation (10%-10.9% higher then control group, T1) and enhanced ozone [(100 +/- 9) nmol x mol(-1), T2], separately and in combination (combination treatment, T3), making use of LCpro + Portable Photosynthesis System and DIVING-PAM Fluorometer to determine gas exchange and chlorophyll fluorescence parameters. Results indicated that P(n), G(s), T(r), P(m) and I(k) of T1, T2 and T3 treatments decreased significantly compared to CK (control group, natural air and UV-B radiant intensity condition), while there were no differences between T3 and T1 or T2 or both in major growth stages. UV-B fiercely inhibited the stomatal conductance and transpiration of plants, while T1 stimulated stomata opening and transpiration in jointing stage. Dark respiration (R(d)) of T1 was increased, while no significance difference was found between T2 and CK or T3 and CK in most stages. T1 and T2 reduced F(v)/F(m) value only in booting stage, while T3 was significant lower than CK except jointing stage. qP value declined significantly in treatments of T1, T2 and T3 as Compared to CK, with decreasing amplitude occurring in the order T3 > T1 > T2. NPQ, Y (NPQ), Y (NO) value of T1, T2 and T3 treatments increased significantly compared to CK, with maximum increasing amplitude occurring in the order T3 > T1 > T2, of which NPQ of T1 and T2 turned to decrease since filling stage, and T3 turned to decrease since flowering stage to a greater degree than T1 and T2. T1, T2 and T3 also caused significance reduction in Y (II), with reducing amplitude occurring in the order T3 > T1 > T2. Obviously, supplemental UV-B radiation and enhanced ozone caused a significant decrease in gas exchange capacity, maximum photochemical capacity and photosynthetic activity of winter wheat, and the photoprotective mechanism was damage, leading to greater proportion of excitation energy dissipated in the form of non-regulated heat and fluorescence. The photosystems of winter wheat were damaged by both excess energy and UV-B or excess energy and O3, or excess energy, UV-B and O3 together. UV-B and O3 in combination enhanced the negative effects on photo-protective mechanisms and excitation energy distribution in PS II compared to UV-B or O3 alone, while the interactive effects were less than addition.


Assuntos
Ozônio/farmacologia , Fotossíntese/fisiologia , Estresse Fisiológico/fisiologia , Triticum/fisiologia , Raios Ultravioleta , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Estações do Ano
2.
Huan Jing Ke Xue ; 31(7): 1643-51, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20825039

RESUMO

Stress effects of surface increased ozone concentration on winter wheat photosynthesis, lipid peroxidation and antioxidant systems in varied growth stages (jointing stage, booting stage, blooming stage and grain filling stage) were studied, the winter wheat was exposed to open top chambers (OTCs) in an open field conditions to three levels ozone concentrations (CK, 100 nmol x mol(-1), 150 nmol x mol(-1)). The results revealed that within 150 nmol x mol(-1) ozone concentration, as the ozone concentration and time increased,total chlorophyll content,chlorophyll a and b contents of winter wheat leaves were general declined,but compared to CK, the total chlorophyll and chlorophyll a content of T1 treatment groups were a little higher at booting and blooming stage; the conductance of stomatal was affected, the activation of unit leaf area decreased, intercellular CO2 concentration and stomatal limitation value showed a fluctuation change tendency. At the same time, a self-protective mechanism of winter wheat were launched. Concrete expression of SOD activity first increased rapidly and then gradually decreased, the activity of POD showed a decrease firstly and then rapidly increased. From the jointing stage to the blooming stage and from the grain filling stage one to grain filling stage two, the activity of CAT rapidly increased first and then comparatively decreased, but the content of MDA kept steadily rising. The carotenoid content increased first and then decreased, heat dissipation of unit leaf area increased. These results indicate that antioxidant enzymes can not completely eliminate excessive reactive oxygen species in vivo of winter wheat, then lead to accumulation of reactive oxygen species, further exacerbate the lipid peroxidation, that result in the increase of membrane permeability, degradation of chlorophyll, reduction of net photosynthetic rate, imposing on the winter wheat leaves senescence process.


Assuntos
Antioxidantes/metabolismo , Ozônio/toxicidade , Fotossíntese/fisiologia , Triticum/fisiologia , Peroxidação de Lipídeos , Peroxidase/metabolismo , Estações do Ano , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...