Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(28): eado0873, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985869

RESUMO

Patterned arrays of perovskite single crystals can avoid signal cross-talk in optoelectronic devices, while precise crystal distribution plays a crucial role in enhancing device performance and uniformity, optimizing photoelectric characteristics, and improving optical management. Here, we report a strategy of droplet-assisted self-alignment to precisely assemble the perovskite single-crystal arrays (PSCAs). High-quality single-crystal arrays of hybrid methylammonium lead bromide (MAPbBr3) and methylammonium lead chloride (MAPbCl3), and cesium lead bromide (CsPbBr3) can be precipitated under a formic acid vapor environment. The crystals floated within the suspended droplets undergo movement and rotation for precise alignment. The strategy allows us to deposit PSCAs with a pixel size range from 200 to 500 micrometers on diverse substrates, including indium tin oxide, glass, quartz, and poly(dimethylsiloxane), and the area can reach up to 10 centimeters by 10 centimeters. The PSCAs exhibit excellent photodetector performance with a large responsivity of 24 amperes per watt.

2.
Nano Lett ; 24(28): 8784-8792, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38975746

RESUMO

The detection of hepatitis B surface antigen (HBsAg) is critical in diagnosing hepatitis B virus (HBV) infection. However, existing clinical detection technologies inevitably cause certain inaccuracies, leading to delayed or unwarranted treatment. Here, we introduce a label-free plasmonic biosensing method based on the thickness-sensitive plasmonic coupling, combined with supervised deep learning (DL) using neural networks. The strategy of utilizing neural networks to process output data can reduce the limit of detection (LOD) of the sensor and significantly improve the accuracy (from 93.1%-97.4% to 99%-99.6%). Compared with widely used emerging clinical technologies, our platform achieves accurate decisions with higher sensitivity in a short assay time (∼30 min). The integration of DL models considerably simplifies the readout procedure, resulting in a substantial decrease in processing time. Our findings offer a promising avenue for developing high-precision molecular detection tools for point-of-care (POC) applications.


Assuntos
Técnicas Biossensoriais , Antígenos de Superfície da Hepatite B , Hepatite B , Redes Neurais de Computação , Antígenos de Superfície da Hepatite B/análise , Antígenos de Superfície da Hepatite B/imunologia , Humanos , Hepatite B/diagnóstico , Hepatite B/virologia , Hepatite B/imunologia , Hepatite B/sangue , Técnicas Biossensoriais/métodos , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/isolamento & purificação , Limite de Detecção , Ouro/química , Aprendizado Profundo , Ressonância de Plasmônio de Superfície/métodos , Sistemas Automatizados de Assistência Junto ao Leito
3.
Biosens Bioelectron ; 261: 116469, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38850738

RESUMO

Despite high sensitivity of nanoparticle-on-mirror cavities, a crucial branch of plasmonic nanomaterials, complex preparation and readout processes limit their extensive application in biosensing. Alternatively, liquid metals (LMs) combining fluidity and excellent plasmonic characteristics have become potential candidates for constructing plasmonic nanostructures. Herein, we propose a microfluidic-integration strategy to construct LM-based immunoassay platform, enabling LM-based nanoplasmonic sensors to be used for point-of-care (POC) clinical biomarker detection. Flowable LM is introduced onto protein-coated Au nanoparticle monolayer to form a "mirror-on-nanoparticle" nanostructure, simplifying the fabrication process in the conventional nanoparticle-on-mirror cavities. When antibodies were captured by antigens coated on the Au nanoparticle monolayer, devices respond both thickness and refractive index change of biomolecular layers, outputting naked-eye readable signals with high sensitivity (limit of detection: ∼ 604 fM) and a broad dynamic range (6 orders). This new assay, which generates quantitative results in 30 min, allows for high-throughput, smartphone-based detection of SARS-CoV-2 antibodies against multiple variants in clinical serum or blood samples. These results establish an advanced avenue for POC testing with LM materials, and demonstrate its potential to facilitate diagnostics, surveillance and prevalence studies for various infectious diseases.


Assuntos
Anticorpos Antivirais , Técnicas Biossensoriais , COVID-19 , Ouro , Nanopartículas Metálicas , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Ouro/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/instrumentação , COVID-19/diagnóstico , COVID-19/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunoensaio/instrumentação , Imunoensaio/métodos , Limite de Detecção , Dispositivos Lab-On-A-Chip , Desenho de Equipamento , Testes Imediatos , Técnicas Analíticas Microfluídicas/instrumentação , Smartphone
4.
Adv Mater ; : e2405002, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738270

RESUMO

Owing to the increased tissue iron accumulation in patients with diabetes, microorganisms may activate high expression of iron-involved metabolic pathways, leading to the exacerbation of bacterial infections and disruption of systemic glucose metabolism. Therefore, an on-demand transdermal dosing approach that utilizes iron homeostasis regulation to combat antimicrobial resistance is a promising strategy to address the challenges associated with low administration bioavailability and high antibiotic resistance in treating infected diabetic wounds. Here, it is aimed to propose an effective therapy based on hemoglobin bionics to induce disturbances in bacterial iron homeostasis. The preferred "iron cargo" is synthesized by protoporphyrin IX chelated with dopamine and gallium (PDGa), and is delivered via a glucose/pH-responsive microneedle bandage (PDGa@GMB). The PDGa@GMB downregulates the expression levels of the iron uptake regulator (Fur) and the peroxide response regulator (perR) in Staphylococcus aureus, leading to iron nutrient starvation and oxidative stress, ultimately suppressing iron-dependent bacterial activities. Consequently, PDGa@GMB demonstrates insusceptibility to genetic resistance while maintaining sustainable antimicrobial effects (>90%) against resistant strains of both S. aureus and E. coli, and accelerates tissue recovery (<20 d). Overall, PDGa@GMB not only counteracts antibiotic resistance but also holds tremendous potential in mediating microbial-host crosstalk, synergistically attenuating pathogen virulence and pathogenicity.

5.
Nat Commun ; 15(1): 257, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177148

RESUMO

Sensitive and stable perovskite X-ray detectors are attractive in low-dosage medical examinations. The high sensitivity, tunable chemical compositions, electronic dimensions, and low-cost raw materials make perovskites promising next-generation semiconductors. However, their ionic nature brings serious concerns about their chemical and water stability, limiting their applications in well-established technologies like crystal polishing, micro-processing, photolithography, etc. Herein we report a one-dimensional tryptamine lead iodide perovskite, which is stable in water for several months as the strong cation-π interactions between organic cations. The one-dimensional and two-dimensional tryptamine lead iodide perovskite tablets are switchable through thermal-annealing or water-soaking treatments to relax microstrains. The water-stable and microstrain-free one-dimensional perovskite tablets yield a large sensitivity of 2.5 × 106 µC Gyair-1 cm-2 with the lowest detectable dose rate of 5 nGyair s-1. Microelectrode arrays are realized by surface photolithography to construct high-performance X-ray flat mini-panels with good X-ray imaging capability, and a record spatial resolution of 17.2 lp mm-1 is demonstrated.

6.
Nano Lett ; 23(23): 10892-10900, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047611

RESUMO

Novel high-throughput protein detection technologies are critically needed for population-based large-scale SARS-CoV-2 antibody detection as well as for monitoring quality and duration of immunity against virus variants. Current protein microarray techniques rely heavily on labeled transduction methods that require sophisticated instruments and complex operations, limiting their clinical potential, particularly for point-of-care (POC) applications. Here, we developed a label-free and naked-eye readable microarray (NRM) based on a thickness-sensing plasmon ruler, enabling antibody profiling within 30 min. The NRM chips provide 100% accuracy for neutralizing antibody detection by efficiently screening antigen types and experimental conditions and allow for the profiling of antibodies against multiple SARS-CoV-2 variants in clinical samples. We further established a flexible "barcode" NRM assay with a simple tape-based operation, enabling an effective smartphone-based readout and analysis. These results demonstrate new strategies for high-throughput protein detection and highlight the potential of novel protein microarray techniques for realistic clinical applications.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Anticorpos Neutralizantes
7.
ACS Appl Mater Interfaces ; 15(46): 53283-53296, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948751

RESUMO

Probiotic therapy in infected wound healing is hindered by its low viability and colonization efficiency during treatments. Developing dressings that maintain metabolic activity and prevent the potential leakage of probiotics is imperative. Herein, a culture-delivery live probiotics hydrogel dressing is designed and synthesized, formed by gelatin modified with norbornene (GelNB) and sulfhydryl (GelSH), distributing Lactobacillus reuteri (L. reuteri)-laden alginate microspheres (AlgMPs). GelNB-GelSH hydrogel (GelNBSH) incorporating AlgMPs embedding L. reuteri (GelNBSH-L) possesses bioprintability and efficient polymerization that can maintain the activity of L. reuteri in situ, promote its proliferation, and limit its leakage. Thereby, GelNBSH-L achieved a sustainable antimicrobial effect against both S. aureus and E. coli (>90%). Above all, the results show that GelNBSH-L could ensure propitious viability and efficient antibacterial properties of probiotics, effectively inhibit the further development of bacterial infectious wounds and shorten the repair cycle, aiding in ameliorating future clinical probiotic biotherapy.


Assuntos
Limosilactobacillus reuteri , Probióticos , Staphylococcus aureus , Escherichia coli , Bandagens , Antibacterianos/farmacologia , Hidrogéis/farmacologia , Cicatrização , Probióticos/farmacologia , Probióticos/uso terapêutico
8.
Nano Lett ; 23(16): 7607-7614, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37527513

RESUMO

Accurate identification of tumor margins during cancer surgeries relies on a rapid detection technique that can perform high-throughput detection of multiple suspected tumor lesions at the same time. Unfortunately, the conventional histopathological analysis of frozen tissue sections, which is considered the gold standard, often demonstrates considerable variability, especially in many regions without adequate access to trained pathologists. Therefore, there is a clinical need for a multitumor-suitable complementary tool that can accurately and high-throughput assess tumor margins in every direction within the surgically resected tissue. We herein describe a high-throughput three-dimensional (3D) histological electrophoresis device that uses tumor-specific proteins to identify and contour tumor margins intraoperatively. Testing on seven cell-line xenograft models and human cervical cancer models (representing five types of tissues) demonstrated the high-throughput detection utility of this approach. We anticipate that the 3D histological electrophoresis device will improve the accuracy and efficiency of diagnosing a wide range of cancers.


Assuntos
Eletroforese , Margens de Excisão , Neoplasias , Humanos , Neoplasias/diagnóstico , Animais
9.
Nanoscale ; 15(34): 14189-14204, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37593970

RESUMO

Nanofibrous scaffolds, which are morphologically/structurally similar to native extracellular matrix, are ideal biomaterials for tissue engineering and regenerative medicine. However, the use of traditional electrospinning techniques to produce three-dimensional (3D) nanofibrous scaffolds with desired structural properties presents difficulty. To address this challenge, we prepared a novel liquid-phase-collected photoinitiated polymerised aerogel 3D scaffold (LPPI-AG) using the thermally induced (nanofiber) self-aggregation method after liquid-phase electrospinning of the hydroxyapatite-doped methacrylated polyvinyl alcohol/methacrylated gelatine solution obtained by photoinitiated polymerisation. The fabricated aerogel scaffolds had a high porosity of approximately 99.01% ± 0.40% and an interconnected network structure with pore sizes ranging from submicron to ∼300 µm. The new aerogel rapidly became flowable when exposed to a solution, and it can fill gaps and repair gap edges effectively and be loaded with nutrients and growth factors that promote bone growth for bone tissue engineering. LPPI-AG scaffolds can considerably promote osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Furthermore, in vivo studies showed that the LPPI-AG scaffold significantly promoted bone formation in a mouse model of critical-size calvarial defects.


Assuntos
Regeneração Óssea , Osteogênese , Animais , Camundongos , Materiais Biocompatíveis , Osso e Ossos , Diferenciação Celular
10.
Sci Adv ; 9(26): eadg2690, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390200

RESUMO

Tissue diagnosis is important during surgical excision of solid tumors for margin evaluation. Conventional histopathologic methods rely heavily on image-based visual diagnosis by specialized pathologists, which can be time-consuming and subjective. We report a three-dimensional (3D) histological electrophoresis system for rapid labeling and separation of the proteins within tissue sections, providing a more precise assessment of tumor-positive margin in surgically resected tissues. The 3D histological electrophoresis system uses a tumor-seeking dye labeling strategy to visualize the distribution of tumor-specific proteins within sections and a tumor finder that automatically predicts the tumor contour. We successfully demonstrated the system's capability to predict the tumor contours from five murine xenograft models and distinguish the tumor-invaded region of sentinel lymph nodes. Specifically, we used the system to accurately assess tumor-positive margins from 14 patients with cancer. Our 3D histological electrophoresis system serves as an intraoperative tissue assessment technology for more accurate and automatic pathologic diagnosis.


Assuntos
Proteínas de Neoplasias , Tecnologia , Humanos , Animais , Camundongos , Metástase Linfática , Modelos Animais de Doenças , Eletroforese
11.
Nat Commun ; 14(1): 2417, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105981

RESUMO

Autologous skin flap transplantation is a common method for repairing complex soft tissue defects caused by cancer, trauma, and congenital malformations. Limited blood supply range and post-transplantation ischemia-reperfusion injury can lead to distal necrosis of the flap and long-term functional loss, which severely restricts the decision-making regarding the optimal surgical plan. To address this issue, we develop a hydrogel patch that releases carbon monoxide and nitric oxide gases on demand, to afford a timely blood supply for skin flap transplantation during surgery. Using an ischemia-reperfusion dorsal skin flap model in rats, we show that the hydrogel patch maintains the immediate opening of blood flow channels in transplanted tissue and effective blood perfusion throughout the perioperative period, activating perfusion of the hemodynamic donor site. We demonstrate that the hydrogel patch promotes distal vascularization and long-term functional reconstruction of transplanted tissues by inhibiting inflammatory damage and accelerating blood vessel formation.


Assuntos
Procedimentos de Cirurgia Plástica , Lesões dos Tecidos Moles , Ratos , Animais , Gases , Hidrogéis , Lesões dos Tecidos Moles/cirurgia , Resultado do Tratamento
12.
Nano Lett ; 23(9): 4039-4048, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37071592

RESUMO

Radical lymphadenectomy remains the cornerstone of preventing tumor metastasis through the lymphatic system. Current surgical resection of lymph nodes (LNs) based on fluorescence-guided surgery (FGS) suffers from low sensitivity/selectivity with only qualitative information, hampering accurate intraoperative decision-making. Herein, we develop a modularized theranostic system including NIR-II FGS and a sandwiched plasmonic chip (SPC). Intraoperative NIR-II FGS and detection of tumor-positive lymph nodes were performed on the gastric tumor to determine the feasibility of the modularized theranostic system in defining LN metastasis. Under the NIR-II imaging window, the orthotopic tumor and sentinel lymph nodes (SLNs) were successfully excised without ambient light interference in the operating room. Importantly, the SPC biosensor achieved 100% sensitivity and 100% specificity for tumor markers and realized rapid and high-throughput intraoperative SLN detection. We propose the synergetic design of combining the NIR-II FGS and suitable biosensor will substantially improve the efficiency of cancer diagnosis and therapy follow-up.


Assuntos
Verde de Indocianina , Linfonodo Sentinela , Humanos , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Linfonodos/diagnóstico por imagem , Linfonodos/cirurgia , Linfonodos/patologia , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/cirurgia , Linfonodo Sentinela/patologia
13.
Acta Biomater ; 161: 144-153, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868445

RESUMO

2D cell cultures are suitable for rapid exploration of the factors in the extracellular matrix affecting the development of cells. The technology of the micrometre-sized hydrogel array provides a feasible, miniaturized, and high-throughput strategy for the process. However, current microarray devices lack a handy and parallelized methodology in sample treatment, which makes the process of high-throughput cell screening (HTCS) expensive and inefficient. Here, based on the functionalization of micro-nano structures and the fluid control capability of microfluidic chips, we build a microfluidic spotting-screening platform (MSSP). The MSSP can print 20000 microdroplet spots within 5 min, coupled with a simple strategy for parallel addition of compound libraries. Compared with open microdroplet arrays, the MSSP can control the evaporation rate of nanoliter droplets, providing a stable fabrication platform for hydrogel-microarray-based materials. As a proof-of-concept demonstration, the MSSP successfully controlled the adhesion, adipogenic, and osteogenic differentiation behavior of mesenchymal stem cells by rationally designing the substrate stiffness, adhesion area, and cell density. We anticipate that the MSSP may provide an accessible and promising tool for hydrogel-based HTCS. STATEMENT OF SIGNIFICANCE: High-throughput screening of cells is a common approach to improve the efficiency of biological experiments, and one challenge of the existing technologies is to achieve rapid and precise cell screening with a low-cost and simple strategy. Through the integration of the microfluidic and micro-nanostructure technologies, we fabricated a microfluidic spotting-screening platforms. Benefiting from the flexible control of the fluids, the device can print 20000 microdroplet spots within 5 min, coupled with a simple procedure for parallel addition of compound libraries. High-throughput screening of stem cell lineage specification has also been achieved by the platform, which provides a high-throughput, high-content information extraction strategy for cell-biomaterial interaction research.


Assuntos
Hidrogéis , Microfluídica , Microfluídica/métodos , Ensaios de Triagem em Larga Escala/métodos , Linhagem da Célula , Osteogênese , Impressão Tridimensional
14.
Nano Res ; 16(2): 3215-3223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36312893

RESUMO

Plasmonic enhanced fluorescence (PEF) technology is a powerful strategy to improve the sensitivity of immunofluorescence microarrays (IFMA), however, current approaches to constructing PEF platforms are either expensive/time-consuming or reliant on specialized instruments. Here, we develop a completely alternative approach relying on a two-step protocol that includes the self-assembly of gold nanoparticles (GNPs) at the water-oil interface and subsequent annealing-assisted regulation of gold nanogap. Our optimized thermal-annealing GNPs (TA-GNP) platform generates adequate hot spots, and thus produces high-density electromagnetic coupling, eventually enabling 240-fold fluorescence enhancement of probed dyes in the near-infrared region. For clinical detection of human samples, TA-GNP provides super-high sensitivity and low detection limits for both hepatitis B surface antigen and SARS-CoV-2 binding antibody, coupled with a much-improved detection dynamic range up to six orders of magnitude. With fast detection, high sensitivity, and low detection limit, TA-GNP could not only substantially improve the outcomes of IFMA-based precision medicine but also find applications in fields of proteomic research and clinical pathology. Electronic Supplementary Material: Supplementary material (UV-Vis absorption and transmission spectra of GNPs, SEM, microscopy and digital images of PEF platforms, and fluorescence images of IFMA on PEF platforms) is available in the online version of this article at 10.1007/s12274-022-5035-6.

15.
Nano Lett ; 22(23): 9596-9605, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36394551

RESUMO

Clinical serology assays for detecting the antibodies of the virus are time-consuming, are less sensitive/selective, or rely on sophisticated detection instruments. Here, we develop a sandwiched plasmonic biosensor (SPB) for supersensitive thickness-sensing via utilizing the distance-dependent electromagnetic coupling in sandwiched plasmonic nanostructures. SPBs quantitatively amplify the thickness changes on the nanoscale range (sensitivity: ∼2% nm-1) into macroscopically visible signals, thereby enabling the rapid, label-free, and naked-eye detection of targeted biomolecular species (via the thickness change caused by immunobinding events). As a proof of concept, this assay affords a broad dynamic range (7 orders of magnitude) and a low LOD (∼0.3 pM), allowing for the extremely accurate SARS-CoV-2 antibody quantification (sensitivity/specificity: 100%/∼99%, with a portable optical fiber device). This strategy is suitable for high-throughput multiplexed detection and smartphone-based sensing at the point-of-care, which can be expanded for various sensing applications beyond the fields of viral infections and vaccination.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Ressonância de Plasmônio de Superfície , Ouro/química , SARS-CoV-2 , COVID-19/diagnóstico
16.
Biomater Sci ; 11(1): 235-247, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36426665

RESUMO

The ultimate goal of cutaneous wound healing is to reform a stratified epithelium to restore the normal epidermal barrier, which involves the epithelial-to-mesenchymal transition (EMT) process. However, healing strategies based on EMT induction are immature and ambiguous to date. Excessive induction of EMT may cause fibrosis, hypertrophic scarring, and increased risk of malignancy. Here, we present a new EMT-inducing strategy for eliciting partial EMT to facilitate proper epithelial cell migration. The new EMT-inducing system integrates black phosphorus nanosheets (BPNSs), catechol-modified chitosan (CA-CS), and oxidized dextran (Odex) to engineer an adhesive hydrogel patch (C&BP-Patch) with remarkable efficacy on infectious burn wound healing. The C&BP-Patch can orchestrate key early skin wound healing processes including hemostasis, inflammation, and proliferation, which enable fast partial EMT induction to restore an intact epithelial barrier. The C&BP-Patch acts initially as a high-performance bio-sealant to create a moist and stable microenvironment for EMT. Moreover, the photothermal effects of the C&BP-Patch can eliminate bacteria, accelerate microcirculation and reduce inflammation to maintain a proper EMT. Most importantly, the BPNSs can intrinsically induce partial EMT of epithelial cells via a Snail1-mediated signaling pathway. Therefore, our study proposes a new strategy for effective infectious burn wound healing based on inducing partial EMT.


Assuntos
Queimaduras , Fósforo , Humanos , Cicatrização , Epitélio/metabolismo , Queimaduras/tratamento farmacológico , Queimaduras/metabolismo , Inflamação
17.
Nano Lett ; 22(19): 7965-7975, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165293

RESUMO

The renal-clearable aspect of imaging agent with minimum toxicity issues and side effects is essential for clinical translation, yet clinical near-infrared-I/II (NIR-I/II) fluorophores with timely renal-clearance pathways are very limited. Herein, we rationally develop the cyanine-protein composite strategy through covalent bonding of ß-lactoglobulin (ß-LG) and chloride-cyanine dye to produce a brilliant and stable NIR-I/II fluorophore (e.g., ß-LG@IR-780). The ß-LG acts as a protecting shell with small molecular weight (18.4 kDa) and ultrasmall size (<5 nm), thus endowing the ß-LG@IR-780 with excellent biocompatibility and renal excretion. Our ß-LG@IR-780 probe enables noninvasive and precise NIR-II visualization of the physiological and pathological conditions of the vascular and lymphatic drainage system, facilitating intraoperative imaging-guided surgery and postoperative noninvasive monitoring. The minimum accumulation of our probes in the main organs improves the overall biosafety. This study provides a facile methodology for new-generation NIR-II fluorophores and largely improves the brightness and pharmacokinetics of small molecular dyes.


Assuntos
Linfografia , Imagem Óptica , Angiografia , Cloretos , Corantes Fluorescentes/farmacocinética , Lactoglobulinas , Imagem Óptica/métodos
18.
RSC Adv ; 12(26): 16444-16453, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754868

RESUMO

Orthodontic tooth movement (OTM) is a bone reconstruction process. In most cases, OTM could induce root resorption as a common side effect, called orthodontically induced inflammatory root resorption (OIIRR). OIIRR affects tooth health and interferes with the stability of orthodontic treatment. Osteoclasts, which perform bone resorption in OTM, attack cementum, causing OIIRR. Many signaling pathways are involved in the maturation and differentiation of osteoclasts, among which the ERK1/2 is one of the important pathways. In this experiment, we added Trametinib (Tra), a specific inhibitor of ERK1/2, to catechol-modified chitosan (CHI-C) and oxidized dextran (ODex) to form a CCOD-Trametinib composite hydrogel (CCOD-Tra) to prevent OIIRR. CCOD-Tra exhibited good biocompatibility, injectability, strong adhesion, good hemostatic function and sustained release of Tra. We performed local injection of CCOD-Tra into the periodontal tissues of rats. CCOD-Tra firmly adhered to the periodontal tissues and then released Tra to establish a good biological environment and maintain a drug concentration at a high level around the roots for a long time. H&E, TRAP, immunochemistry staining and micro-CT indicated that CCOD-Tra had a good effect in terms of preventing OIIRR. Cell experiments showed that CCOD-Tra reduced the expression of TRAP, MMP-9 and C-FOS in osteoclast cells through the ERK1/2 signaling pathway to inhibit the differentiation and maturation of osteoclasts. Based on the above results, we concluded that CCOD-Tra had the ability to prevent OIIRR, the high adhesion and injectability of CCOD may provide better therapeutic ideas for clinical prevention of OIIRR.

19.
Nano Lett ; 22(10): 3904-3913, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35522592

RESUMO

Physiological microenvironment engineering has shown great promise in combating a variety of diseases. Herein, we present the rational design of reinforced and injectable blood-derived protein hydrogels (PDA@SiO2-PRF) composed of platelet-rich fibrin (PRF), polydopamine (PDA), and SiO2 nanofibers that can act as dual-level regulators to engineer the microenvironment for personalized bone regeneration with high efficacy. From the biophysical level, PDA@SiO2-PRF with high stiffness can withstand the external loading and maintaining the space for bone regeneration in bone defects. Particularly, the reinforced structure of PDA@SiO2-PRF provides bone extracellular matrix (ECM)-like functions to stimulate osteoblast differentiation via Yes-associated protein (YAP) signaling pathway. From the biochemical level, the PDA component in PDA@SiO2-PRF hinders the fast degradation of PRF to release autologous growth factors in a sustained manner, providing sustained osteogenesis capacity. Overall, the present study offers a dual-level strategy for personalized bone regeneration by engineering the biophysiochemical microenvironment to realize enhanced osteogenesis efficacy.


Assuntos
Hidrogéis , Fibrina Rica em Plaquetas , Regeneração Óssea , Osteogênese , Fibrina Rica em Plaquetas/metabolismo , Dióxido de Silício/metabolismo
20.
Adv Healthc Mater ; 11(13): e2200183, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35306758

RESUMO

Neuroanatomical tracing is considered a crucial technique to assess the axonal regeneration level after injury, but traditional tracers do not meet the needs of in vivo neural tracing in deep tissues. Magnetic resonance (MR) and photoacoustic (PA) imaging have high spatial resolution, great penetration depth, and rich contrast. Fe3 O4 nanoparticles may work well as a dual-modal diagnosis probe for neural tracers, with the potential to improve nerve regeneration. The present study combines antegrade neural tracing imaging therapy for the peripheral nervous system. Fe3 O4 @COOH nanoparticles are successfully conjugated with biotinylated dextran amine (BDA) to produce antegrade nano-neural tracers, which are encapsulated by microfluidic droplets to control leakage and allow sustained, slow release. They have many notable advantages over traditional tracers, including dual-modal real-time MR/PA imaging in vivo, long-duration release effect, and limitation of uncontrolled leakage. These multifunctional anterograde neural tracers have potential neurotherapeutic function, are reliable and may be used as a new platform for peripheral nerve injury imaging and treatment integration.


Assuntos
Nanopartículas , Traumatismos dos Nervos Periféricos , Técnicas Fotoacústicas , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Traumatismos dos Nervos Periféricos/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...