Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Research (Wash D C) ; 2021: 9897353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957407

RESUMO

Scarcity of the antisolvent polymer dielectrics and their poor stability have significantly prevented solution-processed ultraflexible organic transistors from low-temperature, large-scale production for applications in low-cost skin-inspired electronics. Here, we present a novel low-temperature solution-processed PEI-EP polymer dielectric with dramatically enhanced thermal stability, humidity stability, and frequency stability compared with the conventional PVA/c-PVA and c-PVP dielectrics, by incorporating polyethyleneimine PEI as crosslinking sites in nonhydroxyl epoxy EP. The PEI-EP dielectric requires a very low process temperature as low as 70°C and simultaneously possesses the high initial decomposition temperature (340°C) and glass transition temperature (230°C), humidity-resistant dielectric properties, and frequency-independent capacitance. Integrated into the solution-processed C8-BTBT thin-film transistors, the PEI-EP dielectric enables the device stable operation in air within 2 months and in high-humidity environment from 20 to 100% without significant performance degradation. The PEI-EP dielectric transistor array also presents weak hysteresis transfer characteristics, excellent electrical performance with 100% operation rate, high mobility up to 7.98 cm2 V-1 s-1 (1 Hz) and average mobility as high as 5.3 cm2 V-1 s-1 (1 Hz), excellent flexibility with the normal operation at the bending radius down to 0.003 mm, and foldable and crumpling-resistant capability. These results reveal the great potential of PEI-EP polymer as dielectric of low-temperature solution-processed ultraflexible organic transistors and open a new strategy for the development and applications of next-generation low-cost skin electronics.

2.
ACS Appl Mater Interfaces ; 12(11): 13287-13295, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32100528

RESUMO

The development of strain sensors with high sensitivity and stretchability, which can accurately detect different human activities such as subtle physiological signals and large-scale joint motions is essential for disease diagnosis and human health monitoring. However, achieving both high sensitivity and stretchability is still an enormous challenge at the moment, particularly for intrinsically stretchable strain sensors. Herein, utilizing large differences in the conductivity and stretchability of micropatterned Au and SWCNTs, we present an ultrasensitive intrinsically stretchable strain sensor by a one-step photolithography process. Its high sensitivity is inspired from spiders' slit organ and the high stretchability is enlightened from spiders' neural pathway. The skin-like sensor exhibits many superior merits, including ultrahigh sensitivity (gauge factors of 7.1 × 104 to 3.4 × 106), wide detection range (up to 100% strain), excellent durability (1000 cycles), ultralow limit of detection (0.1% strain), fast response (1.3 ms), and minimal feature size (≤100 µm). These fascinating merits allow the strain sensor to precisely detect diverse human activities. This work opens up a feasible path to fabricate highly sensitive and stretchable strain sensors, presenting their promising potential in future personalized healthcare, as electronic skins, and being a portable friendly human-machine interaction system.


Assuntos
Fenômenos Biomecânicos/fisiologia , Monitorização Fisiológica/instrumentação , Dispositivos Eletrônicos Vestíveis , Animais , Desenho de Equipamento , Humanos , Limite de Detecção , Modelos Biológicos , Nanotubos de Carbono/química , Vias Neurais/fisiologia , Aranhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...