Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Micromachines (Basel) ; 14(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37512624

RESUMO

A traditional optical lens usually has a fixed focus, and its focus controlling relies on a bulky lens component, which makes integration difficult. In this study, we propose a kind of terahertz spatial varifocal metamirror with a consistent metal-graphene unit structure whose focus can be flexibly adjusted. The focus deflection angle can be theoretically defined by superimposing certain encoded sequence on it according to Fourier convolution theorem. The configurable metamirror allows for the deflection of the focus position in space. The proposed configuration approach presents a design concept and offers potential advancements in the field of developing novel terahertz devices.

3.
Front Plant Sci ; 14: 1192425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089659

RESUMO

[This corrects the article DOI: 10.3389/fpls.2022.881856.].

4.
Plant Dis ; 107(2): 500-513, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35815962

RESUMO

Leaf spot is a common and serious disease of sweet cherry worldwide and has become a major concern in China. From 2018 to 2020, disease investigations were carried out in Beijing City, Sichuan, Shandong, and Liaoning Provinces in China, and 105 Colletotrichum isolates were obtained from diseased samples. Isolates were identified by morphological characterization coupled with multigene phylogenetic analyses based on six loci (internal transcribed spacer region, glyceraldehyde 3-phosphate dehydrogenase, calmodulin, actin, chitin synthase, and ß-tubulin). A total of 13 Colletotrichum species were identified, namely Colletotrichum aenigma, C. gloeosporioides, C. fructicola, C. siamense, C. temperatum, C. conoides, C. hebeiense, C. sojae, C. plurivorum, C. karsti, C. truncatum, C. incanum, and C. dematium. Among these, C. aenigma (25.7%) was the most prominent species isolated from diseased leaves, followed by C. gloeosporioides (19.0%) and C. fructicola (12.4%). Pathogenicity was tested on detached leaves of cv. 'Tieton' and 'Summit' and young seedlings of cv. 'Brooks' under greenhouse conditions. All 13 species were pathogenic to cherry leaves, and C. aenigma, C. conoides, and C. dematium showed high levels of virulence. Seedlings inoculated with the isolates developed similar symptoms to those seen in the orchards. This study provides the first reports for 11 of the 13 Colletotrichum species on sweet cherry in the world, excluding C. aenigma and C. fructicola. This is the first comprehensive study of Colletotrichum species associated with cherry leaf spot in China, and the results will provide basic knowledge to develop sustainable control measures for cherry leaf spot.


Assuntos
Colletotrichum , Prunus avium , Filogenia , Doenças das Plantas , DNA Fúngico , China
5.
Front Plant Sci ; 13: 881856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574069

RESUMO

Metabolomics is an indispensable part of modern systems biotechnology, applied in the diseases' diagnosis, pharmacological mechanism, and quality monitoring of crops, vegetables, fruits, etc. Metabolomics of fruit trees has developed rapidly in recent years, and many important research results have been achieved in combination with transcriptomics, genomics, proteomics, quantitative trait locus (QTL), and genome-wide association study (GWAS). These research results mainly focus on the mechanism of fruit quality formation, metabolite markers of special quality or physiological period, the mechanism of fruit tree's response to biotic/abiotic stress and environment, and the genetics mechanism of fruit trait. According to different experimental purposes, different metabolomic strategies could be selected, such as targeted metabolomics, non-targeted metabolomics, pseudo-targeted metabolomics, and widely targeted metabolomics. This article presents metabolomics strategies, key techniques in metabolomics, main applications in fruit trees, and prospects for the future. With the improvement of instruments, analysis platforms, and metabolite databases and decrease in the cost of the experiment, metabolomics will prompt the fruit tree research to achieve more breakthrough results.

6.
Polymers (Basel) ; 13(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34451361

RESUMO

Epoxy resin with excellent mechanical properties, chemical stability, and corrosion resistance has been widely used in automotive and aerospace industries. A thin film of epoxy deposited on a substrate has great application in adhesive bonding and protective coating. However, the intrinsic brittleness of epoxy with a relatively low fracture toughness limits its applications. In this work, graphene nanoplatelets (GNP) were added to the epoxy resin to enhance its toughness, hardness, and elastic modulus. A series of nanocomposites with different loadings of GNP were fabricated. Ultrasonic sonication in combination with surfactant Triton X-100 were employed to disperse GNP in the epoxy matrix. A nanocomposite film with a thickness of 0.3 mm was deposited on an Al substrate using a spinning coating technology. The hardness and elastic modulus of the nanocomposite film on the Al substrate were experimentally measured by a nanoindentation test. Analytical expression of the mode II interfacial fracture toughness for the nanocomposite film on an Al substrate with an interfacial edge crack was derived utilizing the linear elastic fracture mechanics and Euler's beam theory. End-notched flexure (ENF) tests were conducted to evaluate the mode II fracture toughness. It was found that the hardness, elastic modulus, and mode II fracture toughness of the nanocomposite film reinforced with 1 wt % of GNP were improved by 71.8%, 63.2%, and 44.4%, respectively, compared with the pure epoxy. The presence of much stiff GNP in the soft epoxy matrix prompts toughening mechanisms such as crack deflection and crack pinning, resulting in the improvements of the fracture toughness, hardness, and elastic modulus. Microscopic observation for the nanocomposite was examined by scanning electron microscopy (SEM) to investigate the dispersion of GNPs in the epoxy matrix. The performance of a nanocomposite film deposited on a substrate was rarely studied, in particular, for the interfacial fracture toughness of the film/substrate composite structure. Utilizing the theoretical model in conjunction with the ENF experimental test presented in this study, an accurate determination of the mode II interfacial fracture toughness of film/substrate composite structure is made possible.

7.
Nanomaterials (Basel) ; 11(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34361128

RESUMO

Nanocomposites were prepared by adding graphene nanoplatelets (GNP) into epoxy with a variety of loadings. The thickness of GNPs used in this study was in a range of 1 nm to 10 nm. Nanocomposite film was deposited on the aluminum (Al) substrate via a spinning coating process. Tensile tests were carried out to determine the elastic modulus, ultimate strength and fracture strain of the nanocomposites. Theoretical prediction of the fracture toughness of the film/substrate composite structure with an interfacial crack under mode I loading was derived utilizing linear elastic fracture mechanics theory. Four-point bending tests were performed to evaluate the mode I fracture toughness. It was observed that the performance of the nanocomposite, such as elastic modulus, ultimate strength, and fracture toughness, were significantly enhanced by the incorporation of GNPs and increased with the increase in GNP concentration. The elastic modulus and mode I fracture toughness of the epoxy reinforced with 1 wt.% of GNPs were increased by 42.2% and 32.6%, respectively, in comparison with pure epoxy. Dispersion of GNPs in the epoxy matrix was examined by scanning electron microscope (SEM). It can be seen that GNPs were uniformly dispersed in the epoxy matrix, resulting in the considerable improvements of the ultimate strength and fracture toughness of the nanocomposite.

8.
Plant Physiol ; 184(4): 1702-1716, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037127

RESUMO

Recent studies have shown that loss of pollen-S function in S4' pollen from sweet cherry (Prunus avium) is associated with a mutation in an S haplotype-specific F-box4 (SFB4) gene. However, how this mutation leads to self-compatibility is unclear. Here, we examined this mechanism by analyzing several self-compatible sweet cherry varieties. We determined that mutated SFB4 (SFB4') in S4' pollen (pollen harboring the SFB4' gene) is approximately 6 kD shorter than wild-type SFB4 due to a premature termination caused by a four-nucleotide deletion. SFB4' did not interact with S-RNase. However, a protein in S4' pollen ubiquitinated S-RNase, resulting in its degradation via the 26S proteasome pathway, indicating that factors in S4' pollen other than SFB4 participate in S-RNase recognition and degradation. To identify these factors, we used S4-RNase as a bait to screen S4' pollen proteins. Our screen identified the protein encoded by S 4 -SLFL2, a low-polymorphic gene that is closely linked to the S-locus. Further investigations indicate that SLFL2 ubiquitinates S-RNase, leading to its degradation. Subcellular localization analysis showed that SFB4 is primarily localized to the pollen tube tip, whereas SLFL2 is not. When S 4 -SLFL2 expression was suppressed by antisense oligonucleotide treatment in wild-type pollen tubes, pollen still had the capacity to ubiquitinate S-RNase; however, this ubiquitin-labeled S-RNase was not degraded via the 26S proteasome pathway, suggesting that SFB4 does not participate in the degradation of S-RNase. When SFB4 loses its function, S4-SLFL2 might mediate the ubiquitination and degradation of S-RNase, which is consistent with the self-compatibility of S4' pollen.


Assuntos
Polinização/genética , Polinização/fisiologia , Prunus avium/genética , Prunus avium/fisiologia , Ribonucleases/genética , Ribonucleases/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia , China , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
9.
Genomics ; 112(3): 2369-2378, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31945464

RESUMO

Strawberry fruit ripening is a complex process affected by multiple factors at different regulation levels. To elucidate the regulation mechanisms, the combined analysis of sRNAome and transcriptome were used. A total of 124 known and 190 novel miRNAs were found, 62 of them were significantly differentially expressed (DE). The targets of the DE miRNAs were parsed and several TFs, such as SPL, ARF, WRKY, and TCP, were found to be involved in ripening. Elevated CO2 can significantly postpone ripening and miR156, miR166f, miR171a, and miR171d were the DE miRNAs. Transcriptome analysis found 313 DE genes related to fruit ripening, including cell wall metabolism-related genes, color-related genes, ethylene-related genes, and genes encoding TFs such as MYB, SPL, NAC, TCP, and ARF. Based on above, a combined regulatory model involved in fruit ripening was created. These results provide valuable information for understanding the complicated coordinated regulatory network of strawberry fruit ripening.


Assuntos
Fragaria/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Dióxido de Carbono , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , RNA Mensageiro/metabolismo
10.
Hortic Res ; 6: 135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814988

RESUMO

Sweet cherry (Prunus avium) is a popular fruit with high nutritional value and excellent flavor. Although pollen plays an important role in the double fertilization and subsequent fruit production of this species, little is known about its pollen tube transcriptome. In this study, we identified 16,409 transcripts using single-molecule sequencing. After filtering 292 transposable elements, we conducted further analyses including mRNA classification, gene function prediction, alternative splicing (AS) analysis, and long noncoding RNA (lncRNA) identification to gain insight into the pollen transcriptome. The filtered transcripts could be matched with 3,438 coding region sequences from the sweet cherry genome. GO and KEGG analyses revealed complex biological processes during pollen tube elongation. A total of 2043 AS events were predicted, 7 of which were identified in different organs, such as the leaf, pistil and pollen tube. Using BLASTnt and the Coding-Potential Assessment Tool (CPAT), we distinguished a total of 284 lncRNAs, among which 154 qualified as natural antisense transcripts (NATs). As the NATs could be the reverse complements of coding mRNA sequences, they might bind to coding sequences. Antisense transfection assays showed that the NATs could regulate the expression levels of their complementary sequences and even affect the growth conditions of pollen tubes. In summary, this research characterizes the transcripts of P. avium pollen and lays the foundation for elucidating the physiological and biochemical mechanisms underlying sexual reproduction in the male gametes of this species.

11.
Planta ; 249(6): 1799-1810, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30840178

RESUMO

MAIN CONCLUSION: 157 known and 55 novel miRNAs were found in sweet cherry fruit. MiRNA target genes involved in fruit ripening and the differentially expressed miRNAs under CO2 treatment were identified. MicroRNAs (miRNAs) are short non-coding RNAs and play important functions in many biological processes, including fruit ripening and senescence. In the current study, the high-throughput sequencing and bioinformatics methods were implemented to decipher the miRNAs landscape in sweet cherry fruit. A total of 157 known miRNAs belonging to 50 families and 55 putative novel miRNAs were found. Target genes of the miRNAs were predicted and genes involved in fruit ripening were found, including F-box proteins and TFs such as SPL, TCP, NAC, MYB, ARF and AP2/ERF. And these target genes were further confirmed by degradome sequencing. A regulatory network model was constructed to uncover the miRNAs and their targets involved in fruit ripening and senescence. Importantly, elevated carbon dioxide can significantly postpone the ripening and senescence of sweet cherry fruit and the differentially expressed miRNAs exposed to CO2 were identified. These miRNAs included miR482j, miR6275, miR164, miR166, miR171, miR393, miR858, miR3627a, miR6284, miR6289 and miR7122b, and some of their functions were linked to fruit ripening. This study was the first report to profile miRNAs in sweet cherry fruit and it would provide more information for further study of miRNA roles in the ripening processes and their regulation mechanism underlying the effects of high carbon dioxide treatment on fruit ripening.


Assuntos
Dióxido de Carbono/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Prunus avium/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Prunus avium/crescimento & desenvolvimento , Prunus avium/fisiologia , RNA de Plantas/genética , Análise de Sequência de RNA
12.
Opt Express ; 25(17): 20477-20485, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041728

RESUMO

The terahertz band is an increasingly important spectrum in a wide range of applications from bioimaging and medical diagnostics to security and wireless communications. We propose a tunable terahertz coherent radiation source based on graphene plasmon-induced transition radiation. The transition radiation in terahertz regime arises from the graphene plasmons, which are excited by a normally incident bunched electron beam. We analyze the field-intensities and spectral-angular distributions of the transition radiation with respect to Fermi energy, substrate dielectric permittivity, and electron bunch energy for both the coherent and incoherent radiation. The effect of electron bunching on the radiation pattern is discussed. The mechanism of plasmon frequency-selective transition radiation is discovered.

13.
Plant Biotechnol J ; 14(11): 2120-2133, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27107393

RESUMO

Sweet cherry is a diploid tree species and its fruit skin has rich colours from yellow to blush to dark red. The colour is closely related to anthocyanin biosynthesis and is mainly regulated at the transcriptional level by transcription factors that regulate the expression of multiple structural genes. However, the genetic and molecular bases of how these genes ultimately determine the fruit skin colour traits remain poorly understood. Here, our genetic and molecular evidences identified the R2R3 MYB transcription factor PavMYB10.1 that is involved in anthocyanin biosynthesis pathway and determines fruit skin colour in sweet cherry. Interestingly, we identified three functional alleles of the gene causally leading to the different colours at mature stage. Meanwhile, our experimental results of yeast two-hybrid assays and chromatin immunoprecipitation assays revealed that PavMYB10.1 might interact with proteins PavbHLH and PavWD40, and bind to the promoter regions of the anthocyanin biosynthesis genes PavANS and PavUFGT; these findings provided to a certain extent mechanistic insight into the gene's functions. Additionally, genetic and molecular evidences confirmed that PavMYB10.1 is a reliable DNA molecular marker to select fruit skin colour in sweet cherry.


Assuntos
Antocianinas/genética , Frutas/genética , Pigmentação/genética , Prunus avium/genética , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Prunus avium/metabolismo , Fatores de Transcrição/genética
14.
PLoS One ; 10(10): e0141261, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26516760

RESUMO

A cross between the sweet cherry (Prunus avium) cultivars 'Wanhongzhu' and 'Lapins' was performed to create a mapping population suitable for the construction of a linkage map. The specific-locus amplified fragment (SLAF) sequencing technique used as a single nucleotide polymorphism (SNP) discovery platform and generated 701 informative genotypic assays; these, along with 16 microsatellites (SSRs) and the incompatibility (S) gene, were used to build a map which comprised 8 linkage groups (LGs) and covered a genetic distance of 849.0 cM. The mean inter-marker distance was 1.18 cM and there were few gaps > 5 cM in length. Marker collinearity was maintained with the established peach genomic sequence. The map was used to show that trunk diameter (TD) is under the control of 4 loci, mapping to 3 different LGs. Different locus influenced TD at a varying stage of the tree's development. The high density 'W×L' genetic linkage map has the potential to enable high-resolution identification of QTLs of agronomically relevant traits, and accelerate sweet cherry breeding.


Assuntos
Mapeamento Cromossômico/métodos , Caules de Planta/anatomia & histologia , Prunus avium/anatomia & histologia , Locos de Características Quantitativas , Genes de Plantas , Genótipo , Melhoramento Vegetal , Caules de Planta/genética , Polimorfismo de Nucleotídeo Único , Prunus avium/genética , Análise de Sequência de DNA
15.
Plant Cell Physiol ; 55(5): 862-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24443499

RESUMO

The MYB transcription factors and plant hormone ABA have been suggested to play a role in fruit anthocyanin biosynthesis, but supporting genetic evidence has been lacking in sweet cherry. The present study describes the first functional characterization of an R2R3-MYB transcription factor, PacMYBA, from red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Transient promoter assays demonstrated that PacMYBA physically interacted with several anthocyanin-related basic helix-loop-helix (bHLH) transcription factors to activate the promoters of PacDFR, PacANS and PacUFGT, which are thought to be involved in anthocyanin biosynthesis. Furthermore, the immature seeds of transgenic Arabidopsis plants overexpressing PacMYBA exhibited ectopic pigmentation. Silencing of PacMYBA, using a Tobacco rattle virus (TRV)-induced gene silencing technique, resulted in sweet cherry fruit that lacked red pigment. ABA treatment significantly induced anthocyanin accumulation, while treatment with the ABA biosynthesis inhibitor nordihydroguaiaretic acid (NDGA) blocked anthocyanin production. PacMYBA expression peaked after 2 h of pre-incubation in ABA and was 15.2-fold higher than that of sweet cherries treated with NDGA. The colorless phenotype was also observed in the fruits silenced in PacNCED1, which encodes a key enzyme in the ABA biosynthesis pathway. The endogenous ABA content as well as the transcript levels of six structural genes and PacMYBA in PacNCED1-RNAi (RNA interference) fruit were significantly lower than in the TRV vector control fruit. These results suggest that PacMYBA plays an important role in ABA-regulated anthocyanin biosynthesis and ABA is a signal molecule that promotes red-colored sweet cherry fruit accumulating anthocyanin.


Assuntos
Ácido Abscísico/metabolismo , Antocianinas/biossíntese , Proteínas de Plantas/metabolismo , Prunus/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Inibidores de Lipoxigenase/farmacologia , Masoprocol/farmacologia , Microscopia de Fluorescência , Dados de Sequência Molecular , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Prunus/efeitos dos fármacos , Prunus/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
16.
J Plant Physiol ; 170(3): 315-20, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23206932

RESUMO

A homologue of SQUAMOSA/APETALA1, designated PaAP1, was isolated from Prunus avium by reverse transcription-PCR (RT-PCR). The full length of PaAP1 cDNA is 753 bp, and it codes for a polypeptide of 250 amino acid residues. Sequence comparison revealed that PaAP1 belongs to the MADS-box gene family. Phylogenetic analysis indicated that PaAP1 shared the highest identity with SQUA/AP1 homologues from Prunus serrulata. Real-time fluorescence quantitative PCR analysis showed that PaAP1 was expressed at high levels in petal, sepal, style, and flower buds, which was slightly different from the expression pattern of AP1 of Arabidopsis thaliana. To characterize the functions of PaAP1, we assessed Arabidopsis transformed with 35S::PaAP1. A total of 8 transgenic T(1) lines with an early flowering phenotype were obtained, and a 3:1 segregation ratio of flowering time was observed in the T(2) generation of 4 lines. This study provides the first functional analysis of an SQUA/AP1 homolog from P. avium and suggests that PaAP1 is potentially useful for shortening the juvenile period in sweet cherry.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Proteínas de Domínio MADS/genética , Prunus/crescimento & desenvolvimento , Prunus/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Fatores de Tempo
17.
J Food Sci ; 76(4): C633-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-22417346

RESUMO

A new spectrometric method ultra performance liquid chromatography-tandem mass spectrometric with high precision and rapid analysis was developed to separate 17 phenolic compounds. Different species of cherries, including 10 sweet cherry (Prunus avium L.) cultivars, a tart cherry (P. cerasus L.) rootstock (CAB), and a hybrid rootstock 'Colt' (P. avium × P. pseudocerasus), were analyzed for phenolics contents by this method. The results showed that significant differences were observed among the phenolic compound contents in different cherry species. In 10 sweet cherry cultivars, the contents of neochlorogenic acid and cyanidin-3O-rutinoside were much higher in red-colored fruits (for example, 64.60 and 44.50 mg/100 g fresh weight in Burlat, respectively) than those in bicolored ones. Principal component analysis revealed that cyanidin-3O-rutinoside was an effective index for grouping the cultivars with similar species and fruit colors. Moreover, there were strong positive correlations between phenolics content and antioxidant activity, which was higher in red-colored cherries.


Assuntos
Antioxidantes/análise , Frutas/química , Fenóis/análise , Extratos Vegetais/análise , Prunus/química , Antocianinas/análise , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Prunus/classificação , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...