Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(2): 814-824, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38226596

RESUMO

Cultivated meat production is a promising technology to generate meat while reducing the reliance on traditional animal farming. Biomaterial scaffolds are critical components in cultivated meat production, enabling cell adhesion, proliferation, differentiation, and orientation. In the present work, naturally derived glutenin was fabricated into films with and without surface patterning and in the absence of toxic cross-linking or stabilizing agents for cell culture related to cultivated meat goals. The films were stable in culture media for at least 28 days, and the surface patterns induced cell alignment and guided myoblast organization (C2C12s) and served as a substrate for 3T3-L1 adipose cells. The films supported adhesion, proliferation, and differentiation with mass balance considerations (films, cells, and matrix production). Freeze-thaw cycles were applied to remove cells from glutenin films and monitor changes in glutenin mass with respect to culture duration. Extracellular matrix (ECM) extraction was utilized to quantify matrix deposition and changes in the original biomaterial mass over time during cell cultivation. Glutenin films with C2C12s showed mass increases with time due to cell growth and new collagen-based ECM expression during proliferation and differentiation. All mass balances were compared among cell and noncell systems as controls, along with gelatin control films, with time-dependent changes in the relative content of film, matrix deposition, and cell biomass. These data provide a foundation for cell/biomaterial/matrix ratios related to time in culture as well as nutritional and textural features.


Assuntos
Materiais Biocompatíveis , Carne in vitro , Animais , Glutens/química , Músculos
2.
Elife ; 122023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014056

RESUMO

We present a method of producing bulk cell-cultured fat tissue for food applications. Mass transport limitations (nutrients, oxygen, waste diffusion) of macroscale 3D tissue culture are circumvented by initially culturing murine or porcine adipocytes in 2D, after which bulk fat tissue is produced by mechanically harvesting and aggregating the lipid-filled adipocytes into 3D constructs using alginate or transglutaminase binders. The 3D fat tissues were visually similar to fat tissue harvested from animals, with matching textures based on uniaxial compression tests. The mechanical properties of cultured fat tissues were based on binder choice and concentration, and changes in the fatty acid compositions of cellular triacylglyceride and phospholipids were observed after lipid supplementation (soybean oil) during in vitro culture. This approach of aggregating individual adipocytes into a bulk 3D tissue provides a scalable and versatile strategy to produce cultured fat tissue for food-related applications, thereby addressing a key obstacle in cultivated meat production.


Assuntos
Adipócitos , Tecido Adiposo , Suínos , Animais , Camundongos , Ácidos Graxos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...