Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(28): e2301850, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010015

RESUMO

Designing excellent electrocatalysts for the hydrogen evolution reaction (HER) is extremely significant in producing clean and sustainable hydrogen fuel. Herein, a rational strategy is developed to fabricate a promising electrocatalyst by introducing atomically dispersed Ru into a cobalt-based metal-organic framework (MOF), Co-BPDC (Co(bpdc)(H2 O)2 , BPDC: 4,4'-Biphenyldicarboxylic acid). The obtained CoRu-BPDC nanosheet arrays exhibit remarkable HER performance with an overpotential of 37 mV at a current density of 10 mA cm-2 in alkaline media, which is superior to most of the MOF-based electrocatalysts and comparable to the commercial Pt/C. Synchrotron radiation-based X-ray absorption fine structure (XAFS) spectroscopy studies verify that the isolated Ru atoms are dispersed in Co-BPDC nanosheets with the formation of five-coordinated Ru-O5 species. XAFS spectroscopy combined with density functional theory (DFT) calculations unravels that atomically dispersed Ru can modulate the electronic structure of the as-obtained Co-BPDC, contributing to the optimization of binding strength for H* and the enhancement of HER performance. This work opens a new avenue to rationally design highly-active single-atom modified MOF-based HER electrocatalysts via modulating electronic structures of MOF.

2.
Small ; 19(28): e2300959, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36970833

RESUMO

Coupling urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is promising for energy-efficient hydrogen production. However, developing cheap and highly active bifunctional electrocatalysts for overall urea electrolysis remains challenging. In this work, a metastable Cu0.5 Ni0.5 alloy is synthesized by a one-step electrodeposition method. It only requires the potentials of 1.33 and -28 mV to obtain the current density of ±10 mA cm-2 for UOR and HER, respectively. The metastable alloy is considered to be the main reason causing the above excellent performances. In the alkaline medium, the as-prepared Cu0.5 Ni0.5 alloy exhibits good stability for HER; and conversely, NiOOH species can be rapidly formed during the UOR due to the phase segregation of Cu0.5 Ni0.5 alloy. In particular, for the energy-saving hydrogen generation system coupled with HER and UOR, only 1.38 V of voltage is needed at 10 mA cm-2 ; and at 100 mA cm-2 , the voltage decreases by ≈305 mV compared with that of the routine water electrolysis system (HER || OER). Compared with some catalysts reported recently, the Cu0.5 Ni0.5 catalyst owns superior electrocatalytic activity and durability. Furthermore, this work provides a simple, mild, and rapid method for designing highly active bifunctional electrocatalysts toward urea-supporting overall water splitting.

3.
Dalton Trans ; 50(47): 17774-17784, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34816851

RESUMO

Developing active, durable, and inexpensive electrocatalysts for the oxygen evolution reaction (OER) is drawing increased interest. Here, a mild hydrothermal-electrodeposition two-step route is designed for the preparation of Ce-doped Ni-S@NiMoO4 micropillar composites on nickel foam (CeNiS@NiMoO4/NF). The as-constructed CeNiS@NiMoO4/NF electrode shows an ultralow overpotential, fast kinetics, superb intrinsic activity and excellent long-term stability for the OER. In 1 M KOH solution, 187 mV overpotential is required to deliver a current density of 10 mA cm-2 with a Tafel slope of 35.28 mV dec-1, and in a saline-alkaline solution of 1 M KOH and 0.5 M NaCl, only 260 mV overpotential is needed to reach 100 mA cm-2, demonstrating its excellent OER performance. The above outstanding electrocatalytic activity is attributed to the influence of CeNiS nanosheets on the surface microstructure of NiMoO4 micropillars, which not only improves the conductivity of the catalyst, but also increases the surface area, as well as accelerates the escape of gases produced. Compared with other non-precious metal OER electrocatalysts, the as-prepared CeNiS@NiMoO4/NF presents stronger or close electrocatalytic activity and better durability, which provides a new electrocatalyst selection in practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...