Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 9(91): eadl2007, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924422

RESUMO

Cytokines have been identified as key contributors to the development of inflammatory bowel disease (IBD), yet conventional treatments often prove inadequate and carry substantial side effects. Here, we present an innovative biohybrid robotic system, termed "algae-MΦNP-robot," for addressing IBD by actively neutralizing colonic cytokine levels. Our approach combines moving green microalgae with macrophage membrane-coated nanoparticles (MΦNPs) to efficiently capture proinflammatory cytokines "on the fly." The dynamic algae-MΦNP-robots outperformed static counterparts by enhancing cytokine removal through continuous movement, better distribution, and extended retention in the colon. This system is encapsulated in an oral capsule, which shields it from gastric acidity and ensures functionality upon reaching the targeted disease site. The resulting algae-MΦNP-robot capsule effectively regulated cytokine levels, facilitating the healing of damaged epithelial barriers. It showed markedly improved prevention and treatment efficacy in a mouse model of IBD and demonstrated an excellent biosafety profile. Overall, our biohybrid algae-MΦNP-robot system offers a promising and efficient solution for IBD, addressing cytokine-related inflammation effectively.


Assuntos
Colo , Citocinas , Doenças Inflamatórias Intestinais , Nanopartículas , Robótica , Animais , Citocinas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Robótica/instrumentação , Camundongos , Humanos , Macrófagos/metabolismo , Mucosa Intestinal/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Masculino , Desenho de Equipamento , Epitélio
2.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855905

RESUMO

Neurotoxins are known for their extreme lethality. However, due to their enormous diversity, effective and broad-spectrum countermeasures are lacking. This study presents a dual-modal cellular nanoparticle (CNP) formulation engineered for continuous neurotoxin neutralization. The formulation involves encapsulating the metabolic enzyme N-sulfotransferase (SxtN) into metal-organic framework (MOF) nanoparticle cores and coating them with a natural neuronal membrane, termed "Neuron-MOF/SxtN-NPs". The resulting nanoparticles combine membrane-enabled broad-spectrum neurotoxin neutralization with enzyme payload-enabled continuous neurotoxin neutralization. The studies confirm the protection of the enzyme payload by the MOF core and validate the continuous neutralization of saxitoxin (STX). In vivo studies conducted using a mouse model of STX intoxication reveal markedly improved survival rates compared with control groups. Furthermore, acute toxicity assessments show no adverse effects associated with the administration of Neuron-MOF/SxtN-NPs in healthy mice. Overall, Neuron-MOF/SxtN-NPs represent a unique biomimetic nanomedicine platform poised to effectively neutralize neurotoxins, marking an important advancement in the field of countermeasure nanomedicine.

4.
Sci Adv ; 10(24): eadn6157, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865468

RESUMO

Lung metastasis poses a formidable challenge in the realm of cancer treatment, with conventional chemotherapy often falling short due to limited targeting and low accumulation in the lungs. Here, we show a microrobot approach using motile algae for localized delivery of drug-loaded nanoparticles to address lung metastasis challenges. The biohybrid microrobot [denoted "algae-NP(DOX)-robot"] combines green microalgae with red blood cell membrane-coated nanoparticles containing doxorubicin, a representative chemotherapeutic drug. Microalgae provide autonomous propulsion in the lungs, leveraging controlled drug release and enhanced drug dispersion to exert antimetastatic effects. Upon intratracheal administration, algae-NP(DOX)-robots efficiently transport their drug payload deep into the lungs while maintaining continuous motility. This strategy leads to rapid drug distribution, improved tissue accumulation, and prolonged retention compared to passive drug-loaded nanoparticles and free drug controls. In a melanoma lung metastasis model, algae-NP(DOX)-robots exhibit substantial improvement in therapeutic efficacy, reducing metastatic burden and extending survival compared to control groups.


Assuntos
Doxorrubicina , Neoplasias Pulmonares , Nanopartículas , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Animais , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Nanopartículas/química , Camundongos , Linhagem Celular Tumoral , Humanos , Sistemas de Liberação de Medicamentos , Microalgas , Robótica , Progressão da Doença , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química
5.
Adv Sci (Weinh) ; : e2401423, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884169

RESUMO

Effectively neutralizing inflammatory cytokines is crucial for managing a variety of inflammatory disorders. Current techniques that target only a subset of cytokines often fall short due to the intricate nature of redundant and compensatory cytokine networks. A promising solution to this challenge is using cell membrane-coated nanoparticles (CNPs). These nanoparticles replicate the complex interactions between cells and cytokines observed in disease pathology, providing a potential avenue for multiplex cytokine scavenging. While the development of CNPs using experimental animal models has shown great promise, their effectiveness in scavenging multiple cytokines in human diseases has yet to be demonstrated. To bridge this gap, this study selected macrophage membrane-coated CNPs (MФ-CNPs) and assessed their ability to scavenge inflammatory cytokines in serum samples from patients with COVID-19, sepsis, acute pancreatitis, or type-1 diabetes, along with synovial fluid samples from patients with rheumatoid arthritis. The results show that MФ-CNPs effectively scavenge critical inflammatory cytokines, including interleukin (IL)-6, IL-8, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α, in a dose-dependent manner. Overall, this study demonstrates MФ-CNPs as a multiplex cytokine scavenging formulation with promising applications in clinical settings to treat a range of inflammatory disorders.

6.
Bioact Mater ; 38: 321-330, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38764446

RESUMO

Given their dangerous effects on the nervous system, neurotoxins represent a significant threat to public health. Various therapeutic approaches, including chelating agents, receptor decoys, and toxin-neutralizing antibodies, have been explored. While prophylactic vaccines are desirable, it is oftentimes difficult to effectively balance their safety and efficacy given the highly dangerous nature of neurotoxins. To address this, we report here on a nanovaccine against neurotoxins that leverages the detoxifying properties of cell membrane-coated nanoparticles. A genetically modified cell line with constitutive overexpression of the α7 nicotinic acetylcholine receptor is developed as a membrane source to generate biomimetic nanoparticles that can effectively and irreversibly bind to α-bungarotoxin, a model neurotoxin. This abrogates the biological activity of the toxin, enabling the resulting nanotoxoid to be safely delivered into the body and processed by the immune system. When co-administered with an immunological adjuvant, a strong humoral response against α-bungarotoxin is generated that protects vaccinated mice against a lethal dose of the toxin. Overall, this work highlights the potential of using genetic modification strategies to develop nanotoxoid formulations against various biological threats.

7.
Adv Drug Deliv Rev ; 209: 115320, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38643841

RESUMO

The etiology of cancers is multifactorial, with certain bacteria established as contributors to carcinogenesis. As the understanding of carcinogenic bacteria deepens, interest in cancer treatment through bacterial eradication is growing. Among emerging antibacterial platforms, cell membrane-coated nanoparticles (CNPs), constructed by enveloping synthetic substrates with natural cell membranes, exhibit significant promise in overcoming challenges encountered by traditional antibiotics. This article reviews recent advancements in developing CNPs for targeting carcinogenic bacteria. It first summarizes the mechanisms of carcinogenic bacteria and the status of cancer treatment through bacterial eradication. Then, it reviews engineering strategies for developing highly functional and multitasking CNPs and examines the emerging applications of CNPs in combating carcinogenic bacteria. These applications include neutralizing virulence factors to enhance bacterial eradication, exploiting bacterium-host binding for precise antibiotic delivery, and modulating antibacterial immunity to inhibit bacterial growth. Overall, this article aims to inspire technological innovations in developing CNPs for effective cancer treatment through oncogenic bacterial targeting.


Assuntos
Antibacterianos , Bactérias , Membrana Celular , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Animais , Sistemas de Liberação de Medicamentos
8.
Adv Mater ; 36(3): e2303714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37471001

RESUMO

The integration of microorganisms and engineered artificial components has shown considerable promise for creating biohybrid microrobots. The unique features of microalgae make them attractive candidates as natural actuation materials for the design of biohybrid microrobotic systems. In this review, microalgae-based biohybrid microrobots are introduced for diverse biomedical and environmental applications. The distinct propulsion and phototaxis behaviors of green microalgae, as well as important properties from other photosynthetic microalga systems (blue-green algae and diatom) that are crucial to constructing powerful biohybrid microrobots, will be described first. Then the focus is on chemical and physical routes for functionalizing the algae surface with diverse reactive materials toward the fabrication of advanced biohybrid microalgae robots. Finally, representative applications of such algae-driven microrobots are presented, including drug delivery, imaging, and water decontamination, highlighting the distinct advantages of these active biohybrid robots, along with future prospects and challenges.


Assuntos
Microalgas , Robótica
9.
Nat Nanotechnol ; 19(3): 345-353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37903891

RESUMO

Since their initial development, cell membrane-coated nanoparticles (CNPs) have become increasingly popular in the biomedical field. Despite their inherent versatility and ability to enable complex biological applications, there is considerable interest in augmenting the performance of CNPs through the introduction of additional functionalities. Here we demonstrate a genetic-engineering-based modular approach to CNP functionalization that can encompass a wide range of ligands onto the nanoparticle surface. The cell membrane coating is engineered to express a SpyCatcher membrane anchor that can readily form a covalent bond with any moiety modified with SpyTag. To demonstrate the broad utility of this technique, three unique targeted CNP formulations are generated using different classes of targeting ligands, including a designed ankyrin repeat protein, an affibody and a single-chain variable fragment. In vitro, the modified nanoparticles exhibit enhanced affinity towards cell lines overexpressing the cognate receptors for each ligand. When formulated with a chemotherapeutic payload, the modularly functionalized nanoparticles display strong targeting ability and growth suppression in a murine tumour xenograft model of ovarian cancer. Our data suggest genetic engineering offers a feasible approach for accelerating the development of multifunctional CNPs for a broad range of biomedical applications.


Assuntos
Engenharia Genética , Nanopartículas , Humanos , Animais , Camundongos , Linhagem Celular , Membrana Celular , Nanopartículas/química
10.
Small ; 20(14): e2309635, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990378

RESUMO

Neurotoxins present a substantial threat to human health and security as they disrupt and damage the nervous system. Their potent and structurally diverse nature poses challenges in developing effective countermeasures. In this study, a unique nanoparticle design that combines dual-biomimicry mechanisms to enhance the detoxification efficacy of neurotoxins is introduced. Using saxitoxin (STX), one of the deadliest neurotoxins, and its natural binding protein saxiphilin (Sxph) as a model system, human neuronal membrane-coated and Sxph-loaded metal-organic framework (MOF) nanosponges (denoted "Neuron-MOF/Sxph-NS") are successfully developed. The resulting Neuron-MOF/Sxph-NS exhibit a biomimetic design that not only emulates host neurons for function-based detoxification through the neuronal membrane coating, but also mimics toxin-resistant organisms by encapsulating the Sxph protein within the nanoparticle core. The comprehensive in vitro assays, including cell osmotic swelling, calcium flux, and cytotoxicity assays, demonstrate the improved detoxification efficacy of Neuron-MOF/Sxph-NS. Furthermore, in mouse models of STX intoxication, the application of Neuron-MOF/Sxph-NS shows significant survival benefits in both therapeutic and prophylactic regimens, without any apparent acute toxicity. Overall, the development of Neuron-MOF/Sxph-NS represents an important advancement in neurotoxin detoxification, offering promising potential for treating injuries and diseases caused by neurotoxins and addressing the current limitations in neurotoxin countermeasures.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Animais , Camundongos , Humanos , Neurotoxinas , Membrana Celular , Proteínas de Transporte , Nanopartículas/química , Neurônios
11.
Small ; : e2308327, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044300

RESUMO

The multifaceted functions of platelets in various physiological processes have long inspired the development of therapeutic nanoparticles that mimic specific platelet features for disease treatment. Here, the development and characterization of platelet membrane-derived nanodiscs (PLT-NDs) as platelet decoys for biological neutralization is reported. In one application, PLT-NDs effectively bind with anti-platelet autoantibodies, thus blocking them from interacting with platelets. In a mouse model of thrombocytopenia, PLT-NDs successfully neutralize pathological anti-platelet antibodies, preventing platelet depletion and maintaining hemostasis. In another application, PLT-NDs effectively neutralize the cytotoxicity of bacterial virulence factors secreted by methicillin-resistant Staphylococcus aureus (MRSA). In a mouse model of MRSA infection, treatment with PLT-NDs leads to significant survival benefits for the infected mice. Additionally, PLT-NDs show good biocompatibility and biosafety, as demonstrated in acute toxicity studies conducted in mice. These findings underscore the potential of PLT-NDs as a promising platelet mimicry for neutralizing various biological agents that target platelets. Overall, this work expands the repertoire of platelet-mimicking nanomedicine by creating a unique disc-like nanostructure made of natural platelet membranes.

12.
Nat Nanotechnol ; 18(12): 1387-1388, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884659
13.
BME Front ; 4: 0018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849681

RESUMO

The interest in using therapeutic nanoparticles to bind with harmful molecules or pathogens and subsequently neutralize their bioactivity has grown tremendously. Among various nanomedicine platforms, cell membrane-coated nanoparticles, namely, "cellular nanosponges," stand out for their broad-spectrum neutralization capability challenging to achieve in traditional countermeasure technologies. Such ability is attributable to their cellular function-based rather than target structure-based working principle. Integrating cellular nanosponges with various synthetic substrates further makes their applications exceptionally versatile and adaptive. This review discusses the latest cellular nanosponge technology focusing on how the structure-function relationship in different designs has led to versatile and potent medical countermeasures. Four design strategies are discussed, including harnessing native cell membrane functions for biological neutralization, functionalizing cell membrane coatings to enhance neutralization capabilities, combining cell membranes and functional cores for multimodal neutralization, and integrating cellular nanosponges with hydrogels for localized applications. Examples in each design strategy are selected, and the discussion is to highlight their structure-function relationships in complex disease settings. The review may inspire additional design strategies for cellular nanosponges and fulfill even broader medical applications.

14.
Nat Biomed Eng ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723325

RESUMO

Robotic pills leverage the advantages of oral pharmaceutical formulations-in particular, convenient encapsulation, high loading capacity, ease of manufacturing and high patient compliance-as well as the multifunctionality, increasing miniaturization and sophistication of microrobotic systems. In this Perspective, we provide an overview of major innovations in the development of robotic pills-specifically, oral pills embedded with robotic capabilities based on microneedles, microinjectors, microstirrers or microrockets-summarize current progress and applicational gaps of the technology, and discuss its prospects. We argue that the integration of multiple microrobotic functions within oral delivery systems alongside accurate control of the release characteristics of their payload provides a basis for realizing sophisticated multifunctional robotic pills that operate as closed-loop systems.

15.
Biomaterials ; 302: 122330, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742508

RESUMO

Botulinum toxin (BoNT) is a potent neurotoxin that poses a significant threat as a biowarfare weapon and a potential bioterrorist tool. Currently, there is a lack of effective countermeasures to combat BoNT intoxication in the event of a biological attack. Here, we report on a novel solution by combining cell metabolic engineering with cell membrane coating nanotechnology, resulting in the development of glycan-modified cellular nanosponges that serve as a biomimetic and broad-spectrum BoNT detoxification strategy. Specifically, we increase the expression levels of gangliosides on THP-1 cells through metabolic engineering, and then collect the modified THP-1 cell membrane and coat it onto synthetic polymeric cores, creating cellular nanosponges that closely mimic host cells. Our findings demonstrate that higher levels of gangliosides on the cellular nanosponges result in greater binding capacities with BoNT. The glycan-modified cellular nanosponges exhibit superior efficacy in neutralizing BoNT cytotoxicity in vitro when compared to their unmodified counterparts. In a mouse model of BoNT intoxication, the glycan-modified cellular nanosponges show more pronounced survival benefits when administered both as a treatment and a preventative regimen. These results highlight the potential of cellular nanosponges, especially when modified with glycans, as a promising countermeasure platform against BoNT and related clostridial toxins.


Assuntos
Toxinas Botulínicas , Camundongos , Animais , Membrana Celular/metabolismo , Gangliosídeos/metabolismo , Polissacarídeos
16.
Small ; 19(52): e2305551, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635117

RESUMO

Nanoparticles coated with natural cell membranes have emerged as a promising class of biomimetic nanomedicine with significant clinical potential. Among them, macrophage membrane-coated nanoparticles hold particular appeal due to their versatility in drug delivery and biological neutralization applications. This study employs a genetic engineering approach to enhance their in vivo residence times, aiming to further improve their performance. Specifically, macrophages are engineered to express proline-alanine-serine (PAS) peptide chains, which provide additional protection against opsonization and phagocytosis. The resulting modified nanoparticles demonstrate prolonged residence times when administered intravenously or introduced intratracheally, surpassing those coated with the wild-type membrane. The longer residence times also contribute to enhanced nanoparticle efficacy in inhibiting inflammatory cytokines in mouse models of lipopolysaccharide-induced lung injury and sublethal endotoxemia, respectively. This study underscores the effectiveness of genetic modification in extending the in vivo residence times of macrophage membrane-coated nanoparticles. This approach can be readily extended to modify other cell membrane-coated nanoparticles toward more favorable biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Camundongos , Animais , Sistemas de Liberação de Medicamentos/métodos , Macrófagos/metabolismo , Membrana Celular/metabolismo , Citoplasma
17.
J Control Release ; 361: 178-190, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532146

RESUMO

Recently, there has been high interest in developing metal-organic framework (MOF) nanoparticles (NPs) for delivering therapeutic proteins, propelled mainly by the unique hierarchical porous structures of MOFs for protein encapsulation. Novel design strategies have emerged for broad therapeutic applications and clinical translations, leading to multifunctional MOF-NPs with improved biointerfacing capabilities and higher potency. This review summarizes recent MOF-NP designs specifically for protein delivery. The summary focuses on four design categories, including environment-responsive MOF-NPs for on-demand protein delivery, cell membrane-coated MOF-NPs for biomimetic protein delivery, cascade reaction-incorporated MOF-NPs for combinatorial protein delivery, and composite MOF-NPs for intelligent protein delivery. The major challenges and opportunities in using MOF-NPs for protein delivery are also discussed. Overall, this review will promote designs of MOF-NPs with unique properties to address unmet medical needs.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Estruturas Metalorgânicas/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Proteínas/metabolismo , Biomimética
18.
ACS Nano ; 17(16): 15893-15904, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37565604

RESUMO

Inflammatory bowel disease (IBD) is a chronic gastrointestinal tract disorder characterized by uncontrolled inflammatory responses to the disrupted intestinal epithelial barrier and gut microbiome dysbiosis. Currently available small-molecule immunosuppressive agents and anticytokine biologics show limited potency, mainly due to the complexity of the inflammatory network involved in IBD. Here, we develop an oral formulation of macrophage membrane-coated nanoparticles capsulated in enteric polymer-coated gelatin capsules (denoted "cp-MΦ-NPs") for IBD treatment. The capsules protect the nanoparticles from gastric degradation and allow for targeted delivery to the colon. At the inflamed colon, cp-MΦ-NPs act as macrophage decoys that bind and neutralize pro-inflammatory cytokines. The in vivo treatment efficacy of cp-MΦ-NPs is tested in a mouse model of dextran sulfate sodium-induced colitis. In both prophylactic and delayed treatment regimens, the oral delivery of cp-MΦ-NPs significantly alleviates IBD severity, reflected by reduced intestinal inflammation and intestinal barrier restoration. Overall, cp-MΦ-NPs provide a biomimetic nanomedicine strategy for the treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Cápsulas , Mucosa Intestinal , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite/induzido quimicamente , Intestinos , Colo/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
19.
Nano Lett ; 23(17): 7941-7949, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37602707

RESUMO

Cell membrane-based nanovaccines have demonstrated attractive features due to their inherently multiantigenic nature and ability to be formulated with adjuvants. Here, we report on cellular nanodiscs fabricated from cancer cell membranes and incorporated with a lipid-based adjuvant for antitumor vaccination. The cellular nanodiscs, with their small size and discoidal shape, are readily taken up by antigen-presenting cells and drain efficiently to the lymph nodes. Due to its highly immunostimulatory properties, the nanodisc vaccine effectively stimulates the immune system and promotes tumor-specific immunity. Using a murine colorectal cancer model, strong control of tumor growth is achieved in both prophylactic and therapeutic settings, particularly in combination with checkpoint blockades. Considerable therapeutic efficacy is also observed in treating a weakly immunogenic metastatic melanoma model. This work presents a new paradigm for the design of multiantigenic nanovaccines that can effectively activate antitumor immune responses and may be applicable to a wide range of cancers.


Assuntos
Melanoma , Vacinação , Animais , Camundongos , Membrana Celular , Membranas , Células Apresentadoras de Antígenos , Adjuvantes Imunológicos/uso terapêutico
20.
ACS Nano ; 17(14): 13500-13509, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37435892

RESUMO

Malaria infected erythrocytes utilize the parasite protein VAR2CSA to bind to a unique presentation of chondroitin sulfate (CS) for their placenta specific tropism. Interestingly, many cancers express a similar form of CS, thereby termed oncofetal CS (ofCS). The distinctive tropism of malaria infected erythrocytes and the identification of oncofetal CS, therefore, represent potentially potent tools for cancer targeting. Here we describe an intriguing drug delivery platform that effectively mimics infected erythrocytes and their specificity for ofCS. We used a lipid catcher-tag conjugation system for the functionalization of erythrocyte membrane-coated drug carriers with recombinant VAR2CSA (rVAR2). We show that these malaria mimicking erythrocyte nanoparticles (MMENPs) loaded with docetaxel (DTX) specifically target and kill melanoma cells in vitro. We further demonstrate effective targeting and therapeutic efficacy in a xenografted melanoma model. These data thus provide a proof of concept for the use of a malaria biomimetic for tumor targeted drug delivery. Given the broad presentation of ofCS found across various types of malignancies, this biomimetic may therefore show potential as a broadly targeted cancer therapy against multiple tumor indications.


Assuntos
Malária Falciparum , Malária , Melanoma , Humanos , Antígenos de Protozoários/metabolismo , Biomimética , Sulfatos de Condroitina/metabolismo , Eritrócitos/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...