Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(47): 31566-31577, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34869982

RESUMO

To better understand the methane adsorption behavior after microwave exposure, the importance of quantitatively characterizing the effect of cyclical microwave exposure on the molecular structures of coals cannot be overemphasized, with implications for enhancing coalbed methane (CBM) extraction. Thus, cyclical microwave exposure experiments of three different metamorphic coals were conducted, and the methane adsorption capacity before and after each microwave exposure (10 in total) for 120 s was evaluated. Fourier transform infrared spectroscopy analysis and peak fitting technology were applied to quantitatively characterize the changes in the structural parameters of coal molecules. The results showed that after modification, the structural parameters like aromatic carbon fraction (f a-F), aromaticity (I 1 and I 2), degree of condensation (DOC 1 and DOC 2), and the maturity of organic matter ("C") gradually increased with increasing exposure times, while the length of the aliphatic chain or its branching degree (CH 2/CH 3) and the hydrocarbon generating capacity ("A") showed a decreasing trend. The Langmuir volume (V L) of three different rank coal samples decreased from 29.2, 32.8, and 40.4 mL/g to 25.7, 29.3, and 35.7 mL/g, respectively; the Langmuir pressure (P L) increased from 0.588, 0.844, and 0.942 MPa to 0.626, 1.007, and 1.139 MPa, respectively. The modification mechanism was investigated by analyzing the relationship between the methane adsorption behaviors and molecular structures in coals. The release of alkane side chains and the oxidation of oxygen-containing functional groups caused by microwave exposure decreased the number of methane adsorption sites. As a result, the methane adsorption capability decreased. In addition, the decomposition of minerals affects methane adsorption behaviors in coals. This work provides a basis for microwave modification of coal as well as in situ enhancement of CBM extraction using microwave exposure.

2.
ACS Omega ; 6(41): 27358-27367, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693156

RESUMO

The application of electrochemical treatment in coal seams for enhancing coalbed methane (CBM) recovery can also decrease the risks of outburst disasters. The long-flame coal samples were electrochemically modified with 0, 1, 2, and 4 V/cm electric potential gradients, and the pore structures were measured and analyzed by combined low-temperature nitrogen gas adsorption, mercury intrusion prosimetry, and fractal theory. The experimental test results indicated that the pore volumes of macropores (>50 nm) and mesopores (2-50 nm) increased after electrochemical modification and further increased with the increase in electric potential gradient. The fractal dimensions of pores showed a decreasing trend except for the slight fluctuation of the mesopores with a size of 2-4.5 nm after modification, which indicated that the overall roughness and irregularity index of pores decreased. The evolution mechanisms of pore size distributions and their fractal dimensions were explained by the dissolution of minerals and the falling off of alkane side chains in the coal surface, which would expand and connect the pores during the electrochemical modification process. The results obtained from this work were crucial for CBM exploration via an electrochemical method.

3.
ACS Omega ; 6(37): 24147-24155, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34568693

RESUMO

The wettability of gas and liquid on the coal surface is one of the fundamental factors that affect the depressurization process during the coalbed methane (CBM) extraction. The wettability of coal surface changed after electrochemical modification, leading to the change in methane adsorption/desorption and water movement in coal reservoirs. Thus, the CH4 adsorption amount, desorption ratio, and coal-water contact angle of raw and modified anthracite samples were measured and simulated. The mechanism of electrochemical modification was analyzed by functional groups, surface free energy, pore characteristics, interaction energies, and coal swelling. The experimental results showed that the saturated adsorption amount of methane decreased from 41.49 to 34.72 mL/g, and the simulation results showed that the saturated adsorption amount of methane decreased from 2.01 to 1.83 mmol/g. The coal-water contact angle also decreased from 81.9 to 68.6°. Electrochemical modification mainly affects the wettability of CH4 and H2O by changing the functional groups and pore structures of anthracite, and the influence on functional groups of coal surface is greater. This work provided a basis for enhancing CBM extraction by electrochemical modification.

4.
ACS Omega ; 6(23): 15001-15011, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34151081

RESUMO

The application of cyclical microwave modification for accelerating the extraction of coalbed methane (CBM) from anthracite is limited. In this study, the apparent permeability of anthracite samples before and after each microwave treatment (three in total) for 120 s was measured by a self-built permeability-testing platform. Microcomputed tomography (micro-CT) technology and image-processing technology were employed to analyze the 3D micron-scale pore structures, especially the quantitative characterization of connected pores and throats. After modification, the average apparent permeability increased from 0.6 to 5.8 × 10-3 µm2. The generation, expansion, and connection of micron-scale pores and fractures became more obvious with each treatment. The total porosity increased from 3.5 to 6.2%, the connected porosity increased from 0.9 to 4.8%, and the porosity of isolated pores decreased from 2.5 to 1.4% after three cycles. The number, volume, and surface area of the connected pores as well as the number, radius, and surface area of the throats were significantly increased. In addition, the release of alkyl side chains from the anthracite surface reduced the capacity of the anthracite to adsorb CH4 and the decomposition of minerals promoted the development and connectivity of pores. As a result, the gas seepage channels have been greatly improved. This work provides a basis for micron-scale pore characterization after cyclical microwave modification and contributes to CBM extraction.

5.
ACS Omega ; 5(45): 29257-29264, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225156

RESUMO

Accelerating the drainage of water in coal reservoirs can significantly improve the extraction efficiency of coalbed methane (CBM). The movement of water with different pH values in anthracite was tested and analyzed. The results showed that the electro-osmotic flow velocity increased first and then slightly decreased with the increase of time up to 120 h. The electro-osmotic flow was markedly strengthened under a strong acid (pH 2) or strong alkaline (pH 13) environment, and the direction of electro-osmosis was reversed at a pH of 3-4. The changes in zeta potential, surface groups, and minerals in anthracite were tested to analyze the mechanism of electro-osmotic characteristics. The results obtained from this work will provide a basis for the process of drainage and depressurization during the CBM extraction.

6.
ACS Omega ; 5(37): 24073-24080, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984729

RESUMO

The application of electrochemical modification for accelerating methane extraction in lean coal seams is limited due to the lack of experimental and theoretical research studies. Therefore, electrochemical modification with different electric potential gradient values was selected to modify lean coals in this study; meanwhile, the amount of methane adsorption and the methane desorption ratio were tested and analyzed. The results showed that the maximum amount of methane adsorption in coal samples decreased after electrochemical modification and the decrease in methane adsorption increased with an increase in electric potential gradient. The methane desorption ratio increased from 83.20% up to 87.84 and 86.90% at the anode and cathode zone, respectively, after electrochemical modification using a 4 V/cm electric potential gradient. A higher electric potential gradient performs better in the electrochemical modification. The mechanism of electrochemical modification using different electric potential gradients was revealed based on the measurements of Fourier transform infrared spectroscopy and liquid nitrogen adsorption. It is due to an increase in acid groups in coal molecular structure and the change of the specific surface area of coal after modification. The results obtained from this work contribute to the methane extraction via the electrochemical method in lean coal seams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...