Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Pediatr Res ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177247

RESUMO

BACKGROUND: This study aimed to investigate gestational age-specific hematological features in preterm infants with necrotizing enterocolitis (NEC) and identify predictive hematological biomarkers for surgical NEC. METHODS: We conducted a retrospective study comparing gestational age (GA)-specific clinical data between medical NEC (m-NEC) and surgical NEC (s-NEC) subgroups, stratified by GA as <28 weeks, 28 ≤ GA < 32 weeks, and 32 ≤ GA < 37 weeks. Multivariate logistic analysis and receiver operating characteristic curve were used to identify the independent predictors of s-NEC. RESULTS: In comparison to m-NEC at NEC onset, s-NEC infants exhibited the following findings: In GA < 28 weeks, s-NEC infants had lower platelet counts. In 28 ≤ GA < 32 weeks, lower absolute lymphocyte counts, and significant percent drop in platelets, lymphocytes, and monocytes were observed. In 32 ≤ GA < 37 weeks, lower absolute lymphocyte counts and significant percent drop in lymphocytes were found. Independent predictors were able to distinguish s-NEC from m-NEC. The area under the curve (AUC) for platelet counts in GA < 28 weeks was 0.880, while C-reactive protein in 28 ≤ GA < 32 weeks had an AUC of 0.889. The AUC for lymphocyte counts in 32 ≤ GA < 37 weeks was 0.892. CONCLUSION: This study identified hematological abnormalities in the development of NEC based on gestational age. Independent predictors may help clinicians distinguish surgical NEC from medical NEC. IMPACT: Necrotizing enterocolitis (NEC) patients with different gestational ages (GA) exhibit different hematological features and independent predictors of surgical NEC differ among different GAs. Our research made the current studies about peripheral hematological features with NEC more complete by analyzing peripheral data collected within 24 h of birth, at day 5-7, day 3-4, day 1-2 before NEC onset, at the time of NEC onset, day 1, day 2, day 3, day 4-5, day 6-7 after NEC onset. Our study is helpful to clinicians in developing a more detailed diagnostic strategy based on GA for the early identification of surgical NEC.

3.
Cell Death Discov ; 9(1): 151, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156775

RESUMO

Neuroblastoma (NB) is a kind of typical life-threatening extracranial tumor in children. N6-methyladenosine (m6A) modification is closely related to multiple cancer pathological processes. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is a top-ranked prognostic risk gene in NB; however, its function is uncertain. The expression of m6A-associated enzymes in patients with NB was analyzed using the Gene Expression Omnibus (GEO) and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. The IGF2BP3 level in NB cell lines and primary samples was tested using quantitative real-time polymerase chain reaction (qRT-PCR), western blot method, and immunohistochemical analysis. The IGF2BP3 function in cell proliferation was clarified based on many functional in vitro and in vivo experiments. The interaction between IGF2BP3 and N-myc was researched via RNA immunoprecipitation (RIP), m6A RNA immunoprecipitation (MeRIP), and chromatin immunoprecipitation (ChIP) assays. The 16 m6A-regulated enzymes in NB were researched, and the result indicated that IGF2BP3 overexpression was related to cancer progression, COG risk, and survival based on the GEO and TARGET databases. Besides, the IGF2BP3 and MYCN levels were positively correlated. IGF2BP3 expression levels increased in MYCN-amplified NB clinical samples and cells. Knockdown of IGF2BP3 inhibited N-myc expression and NB cell proliferation in vitro and in vivo. IGF2BP3 regulates MYCN RNA stability by modifying m6A. In addition, we demonstrated that N-myc is a transcription factor that directly promotes IGF2BP3 expression in NB cells. IGF2BP3 regulates the proliferation of NB cells via m6A modification of MYCN. N-myc also acts as a transcription factor that regulates IGF2BP3 expression. A positive feedback loop between IGF2BP3 and N-myc facilitates NB cell proliferation.

4.
J Biomed Nanotechnol ; 18(1): 144-157, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35180907

RESUMO

Hyaluronic acid (HA) and curcumin (CUR) have been previously utilized for osteoarthritis (OA) treatment. CUR-loaded chitosan nanoparticles (CUR@CS NPs) and HA CUR@CS NPs were synthesized in our research to ascertain the synergistic impacts of HA and CUR-loaded NPs on OA treatment. CUR@CS NPs and HA CUR@CS NPs were synthesized with evaluation of their particle size, potential, PDI, encapsulation efficiency, drug loading and surface coating as well as HA binding rate. The in vitro CUR release curve and stability of HA-CUR@CS NPs were measured. Chondrocytes were isolated from the cartilages of OA patients, followed by cell uptake assay. The chondrocyte viability and apoptosis were determined. Subsequently, the knee OA model was established, followed by H&E, Safranin O/Fast green staining and micro-CT. HA CUR@CS NPs improved CUR stability and bioavailability. CUR@CS NPs and HA-CUR@CS NPs were successfully characterized and could further be internalized by chondrocytes. CUR@CS NPs promoted tBHP-induced chondrocyte viability and inhibited chondrocyte apoptosis. HA-CUR@CS NPs upregulated the AP-1 and RUNX2 transcription levels to activate Hedgehog pathway, which subsequently blocked the Notch pathway. Mechanically, HA-CUR@CS NPs sustained release and long-lasting effect and long-term retention in the joint cavity and downregulated the expression of several pro-inflammatory cytokines in vivo. HA-CUR@CS NPs exhibited superior effects in the preceding experiments than CUR@CS NPs. Altogether, HA-CUR@CS NPs may restrict inflammation and chondrocyte apoptosis in OA through upregulation of AP-1 and RUNX2.


Assuntos
Quitosana , Curcumina , Nanopartículas , Osteoartrite , Apoptose , Quitosana/química , Condrócitos , Curcumina/química , Proteínas Hedgehog/farmacologia , Humanos , Ácido Hialurônico/química , Nanopartículas/química , Osteoartrite/tratamento farmacológico , Tamanho da Partícula , Fator de Transcrição AP-1/farmacologia , Regulação para Cima
5.
J Pain Res ; 14: 931-940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859494

RESUMO

OBJECTIVE: Pain is the main symptom of osteoarthritis (OA). Nerve growth factor (NGF) plays a crucial role in the generation of OA pain. And estrogen-alone used resulted in a sustained joint pain reduction in postmenopausal women. So we aim to find whether estrogen alters chondrocytes' NGF level, affecting OA pain. METHODS: Primary chondrocytes and cartilage explants isolated from Sprague Dawley rat knees were cultured with physiological concentrations of estrogen (17ß-Estradiol ≥ 98%, E2), Estrogen Receptor α (ERα) inhibitor and stimulants. Then, chondrocytes NGF mRNA expression and protein release were analyzed by a quantitative real-time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) respectively. Additionally, cultures were pre-incubated with MEK-ERK inhibitor to identify the signaling pathway that estrogen alters NGF mRNA and protein levels. RESULTS: We found that chondrocytes NGF expression and release were decreased by E2. E2 also reduced chondrocytes IL-1ß-stimulated or TGF-ß1-stimulated NGF expression. Phosphorylated extracellular signal-regulated kinasep1/2 (p-ERK1/2) signals were detected stronger than the control group by Western Blotting (WB). When we cultured chondrocytes with PD98059 (MEK-ERK inhibitor, PD), NGF mRNA expression was added to 1.41Ct (2.07±0.1 fold). CONCLUSION: We showed that E2 reduces chondrocytes NGF expression significantly, even after stimulation by TGF-ß1 or IL-1ß. MEK-ERK signaling is involved in this process.

6.
Int J Clin Exp Pathol ; 11(12): 5938-5947, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31949681

RESUMO

OBJECTIVE: Based on estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor (HER-2), and proliferation cell nuclear antigen (Ki-67) status, breast cancer (BC) can be divided into several molecular sub-types. The patterns of these biological receptors may change during the course of progression and metastasis which could lead to new treatment strategies accordingly. METHOD: The present multi-center-based clinical data investigated the discordance patterns of molecular features in Chinese BC patients between primary tumors and distant metastasis. 151 pathologically confirmed BC patients were enrolled. The comparison of the statuses of ER, PR, HER-2, and the Ki-67 index by the IHC and/or FISH method was performed. RESULTS: The discordance rate in one or more molecular markers was 52.4% and varied between primary and metastatic lesions. The most common transformation pattern was the loss of ER and PR. On the other hand, the ER-positive patients have the longest OS. Patients with ER changing from positive to negative have the shortest OS. The patients with PR changing from negative to positive have the longest OS, while PR-negative patients have the shortest OS. The median DFI (disease-free interval) was 54.93 months in this study. ER, PR, and HER-2 transformation rates are common in patients with DFI < 2 years than in patients with DFI ≥ 5 years. For patients with an ER-positive expression in metastatic lesions, a significantly prolonged PFS was observed (P < 0.05) in those receiving endocrine treatment. CONCLUSION: The transformation of molecular subtyping status was identified between primary and corresponding relapse lesions and was used for determining the treatment strategies and prognosis prediction in advanced BC patients.

7.
Proc Natl Acad Sci U S A ; 113(15): E2152-61, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27036007

RESUMO

Notch controls skeletogenesis, but its role in the remodeling of adult bone remains conflicting. In mature mice, the skeleton can become osteopenic or osteosclerotic depending on the time point at which Notch is activated or inactivated. Using adult EGFP reporter mice, we find that Notch expression is localized to osteocytes embedded within bone matrix. Conditional activation of Notch signaling in osteocytes triggers profound bone formation, mainly due to increased mineralization, which rescues both age-associated and ovariectomy-induced bone loss and promotes bone healing following osteotomy. In parallel, mice rendered haploinsufficient in γ-secretase presenilin-1 (Psen1), which inhibits downstream Notch activation, display almost-absent terminal osteoblast differentiation. Consistent with this finding, pharmacologic or genetic disruption of Notch or its ligand Jagged1 inhibits mineralization. We suggest that stimulation of Notch signaling in osteocytes initiates a profound, therapeutically relevant, anabolic response.


Assuntos
Osso e Ossos/metabolismo , Receptores Notch/metabolismo , Animais , Células da Medula Óssea/citologia , Osso e Ossos/diagnóstico por imagem , Calcificação Fisiológica/fisiologia , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Proteína Jagged-1/genética , Masculino , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/fisiologia , Presenilina-1/genética , Células Estromais/citologia , Células Estromais/metabolismo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...