Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1609, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383585

RESUMO

The scalable and low-cost room temperature (RT) synthesis for pure-iodine all-inorganic perovskite colloidal quantum dots (QDs) is a challenge due to the phase transition induced by thermal unequilibrium. Here, we introduce a direct RT strongly confined spontaneous crystallization strategy in a Cs-deficient reaction system without polar solvents for synthesizing stable pure-iodine all-inorganic tin-lead (Sn-Pb) alloyed perovskite colloidal QDs, which exhibit bright yellow luminescence. By tuning the ratio of Cs/Pb precursors, the size confinement effect and optical band gap of the resultant CsSnxPb1-xI3 perovskite QDs can be well controlled. This strongly confined RT approach is universal for wider bandgap bromine- and chlorine-based all-inorganic and iodine-based hybrid perovskite QDs. The alloyed CsSn0.09Pb0.91I3 QDs show superior yellow emission properties with prolonged carrier lifetime and significantly increased colloidal stability compared to the pristine CsPbI3 QDs, which is enabled by strong size confinement, Sn2+ passivation and enhanced formation energy. These findings provide a RT size-stabilized synthesis pathway to achieve high-performance pure-iodine all-inorganic Sn-Pb mixed perovskite colloidal QDs for optoelectronic applications.

3.
Nanotechnology ; 32(8): 085202, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33157541

RESUMO

Broadband response photodetectors have received great research interest in optical sensing field. Usually, materials with positive photoconductivity (PPC) are general and the lack of negative photoconductivity (NPC) materials limits the application of photoelectric effect, especially in the broadband photodetecting field. Therefore, the finding of NPC materials is very important. Integrating PPC and NPC response into a single device is extremely meaningful to the development of broadband photodetector. In this work, we fabricated CsPbBr3 nanocrystals (NCs)-multilayered graphene heterojunction, which achieved persistent NPC response to ultra violet (300-390 nm) and PPC response to visible light (420-510 nm). The persistent NPC relies on the desorption of H2O vapor, and varies its intensity with the power intensity of laser. The PPC relies on the holes transmission from NCs to graphene. The recombination of NPC and PPC effect provides background knowledge for the development of broadband photodetector.

4.
Nanomaterials (Basel) ; 9(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835336

RESUMO

All inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (PNCs) exhibit promising applications in light-emitting devices due to their excellent photophysical properties. Herein, we developed a low-cost and convenient method for the preparation of CsPbX3 PNCs in a multiligand-assisted reaction system where peanut oil is applied as a ligand source. The mixed-halide PNCs with tunable optical-band gap were prepared by mixing the single-halide perovskite solutions at room temperature. The resulting PNCs had good monodispersity, with dimensions of 8-10 nm, high photoluminescence quantum yield (96.9%), narrow emission widths (15-34 nm), and tunable emission wavelength (408-694 nm), covering the entire visible spectrum. Additionally, various morphologies of PNCs, such as nanospheres, nanocubes, and nanowires, were obtained by controlling reaction temperature and time, and the amount of oleamine with multiple ligands in peanut oil potentially playing a dominant role in the nucleation/growth processes of our PNCs. Finally, the resulting CsPbBr3 PNCs were employed to develop a white light-emitting diode (WLED), demonstrating the potential lighting applications for our method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...