Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(4): e2308487, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918976

RESUMO

Lead-free double perovskites (DPs) are emerging highly stable emitters with efficient broadband self-trapped exciton (STE) photoluminescence (PL), but their low electroluminescent (EL) efficiency is a critical shortcoming. This work promotes the external quantum efficiency (EQE) and luminance of DP-based white light-emitting diode (wLED) with a normal device structure to 0.76% and 2793 cd m-2 via two modifications: This work prevents the formation of adverse metallic silver, spatially confined STE, and lowers local site symmetry in Cs2 Na0.4 Ag0.6 In0.97 Bi0.03 Cl6 DP by terbium doping; and this work develops a guest-host strategy to improve film morphology, reduce defect density, and increase carrier mobility. These alterations cause substantial increase in STE radiative recombination and charge injection efficiency of perovskite layer. Finally, pure white EL with ideal color coordinates of (0.328, 0.329) and a record-breaking optoelectronic performance is achieved by introducing additional green carbon dots in LED to fill the deficient green component.

2.
Bioeng Transl Med ; 8(5): e10562, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693053

RESUMO

The vascularization of dermal substitutes is a key challenge in efforts to heal deep skin defects. In this study, dual gene-activated dermal scaffolds (DGADSs-1) were fabricated by loading nanocomposite particles of polyethylenimine (PEI)/multiple plasmid DNAs (pDNAs) encoding vascular endothelial growth factor and angiopoietin-1 at a ratio of 1:1. In a similar manner, DGADSs-2 were loaded with a chimeric plasmid encoding both VEGF and Ang-1. In vitro studies showed that both types of DGADSs released PEI/pDNA nanoparticles in a sustained manner; they demonstrated effective transfection ability, leading to upregulated expression of VEGF and Ang-1. Furthermore, both types of DGADSs promoted fibroblast proliferation and blood vessel formation, although DGADSs-1 showed a more obvious promotion effect. A rat full-thickness skin defect model showed that split-thickness skin transplanted using a one-step method could achieve full survival at the 12th day after surgery in both DGADSs-1 and DGADSs-2 groups, and the vascularization time of dermal substitutes was significantly shortened. Compared with the other three groups of scaffolds, the DGADSs-1 group had significantly greater cell infiltration, collagen deposition, neovascularization, and vascular maturation, all of which promoted wound healing. Thus, compared with single-gene-activated dermal scaffolds, DGADSs show greater potential for enhancing angiogenesis. DGADSs with different loading modes also exhibited differences in terms of angiogenesis; the effect of loading two genes (DGADSs-1) was better than the effect of loading a chimeric gene (DGADSs-2). In summary, DGADSs, which continuously upregulate VEGF and Ang-1 expression, offer a new functional tissue-engineered dermal substitute with the ability to activate vascularization.

4.
Mater Today Bio ; 16: 100395, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36042855

RESUMO

Diabetic foot ulcers, typical non-healing wounds, represent a severe clinical problem. Advanced glycation end-products (AGEs), which create a prolonged pro-inflammatory micro-environment in defective sites, can be responsible for refractoriness of these ulcers. Macrophages are polarized to the M2 phenotype to facilitate the transition from a pro-inflammatory microenvironment to an anti-inflammatory microenvironment, which has been demonstrated to be an effective way to accelerate diabetic wound closure. Herein, we developed coaxial hydro-membranes mimicking the extracellular matrix structure that are capable of anti-inflammatory and antibacterial functions for diabetic wound repair. These fibrous membranes maintain a moist microenvironment to support cell proliferation. Macrophages grow in an elongated shape on the surface of the fibrous membranes. The fibrous membranes effectively impaired macrophage AGE-induced M1 polarization and induced macrophage polarization towards the M2 phenotype. The effects of the fibrous membranes on the interactions between macrophages and repair cells under a diabetic condition were also investigated. Furthermore, in vivo results from a full-thickness diabetic wound model confirmed the potential of the coaxial hydro-membranes to accelerate wound healing. This study's results indicate that the developed bioactive anti-inflammatory and antibacterial wound dressing can affect AGE-induced macrophage activation and crosstalk between macrophages and fibroblasts for treating diabetic wounds.

5.
Front Cell Dev Biol ; 9: 720879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708037

RESUMO

Alopecia is a common problem that affects almost every age group and is considered to be an issue for cosmetic or psychiatric reasons. The loss of hair follicles (HFs) and hair caused by alopecia impairs self-esteem, thermoregulation, tactile sensation and protection from ultraviolet light. One strategy to solve this problem is HF regeneration. Many signalling pathways and molecules participate in the morphology and regeneration of HF, such as Wnt/ß-catenin, Sonic hedgehog, bone morphogenetic protein and Notch. Non-coding RNAs (ncRNAs), especially microRNAs and long ncRNAs, have significant modulatory roles in HF development and regeneration via regulation of these signalling pathways. This review provides a comprehensive overview of the status and future prospects of ncRNAs in HF regeneration and could prompt novel ncRNA-based therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...