Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36134660

RESUMO

Cross-reactive immunity between SARS-CoV-2 and other related coronaviruses has been well-documented, and it may play a role in preventing severe COVID-19. Epidemiological studies early in the pandemic showed a geographical association between high influenza vaccination rates and lower incidence of SARS-CoV-2 infection. We, therefore, analyzed whether exposure to influenza A virus (IAV) antigens could influence the T cell repertoire in response to SARS-CoV-2, indicating a heterologous immune response between these 2 unrelated viruses. Using artificial antigen-presenting cells (aAPCs) combined with real-time reverse-transcription PCR (RT-qPCR), we developed a sensitive assay to quickly screen for antigen-specific T cell responses and detected a significant correlation between responses to SARS-CoV-2 epitopes and IAV dominant epitope (M158-66). Further analysis showed that some COVID-19 convalescent donors exhibited both T cell receptor (TCR) specificity and functional cytokine responses to multiple SARS-CoV-2 epitopes and M158-66. Utilizing an aAPC-based stimulation/expansion assay, we detected cross-reactive T cells with specificity to SARS-CoV-2 and IAV. In addition, TCR sequencing of the cross-reactive and IAV-specific T cells revealed similarities between the TCR repertoires of the two populations. These results indicate that heterologous immunity shaped by our exposure to other unrelated endemic viruses may affect our immune response to novel viruses such as SARS-CoV-2.


Assuntos
COVID-19 , Influenza Humana , Antígenos Virais , Linfócitos T CD8-Positivos , Citocinas , Epitopos , Humanos , Receptores de Antígenos de Linfócitos T , SARS-CoV-2
2.
J Med Chem ; 60(1): 415-427, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27992714

RESUMO

PRC2 is a multisubunit methyltransferase involved in epigenetic regulation of early embryonic development and cell growth. The catalytic subunit EZH2 methylates primarily lysine 27 of histone H3, leading to chromatin compaction and repression of tumor suppressor genes. Inhibiting this activity by small molecules targeting EZH2 was shown to result in antitumor efficacy. Here, we describe the optimization of a chemical series representing a new class of PRC2 inhibitors which acts allosterically via the trimethyllysine pocket of the noncatalytic EED subunit. Deconstruction of a larger and complex screening hit to a simple fragment-sized molecule followed by structure-guided regrowth and careful property modulation were employed to yield compounds which achieve submicromolar inhibition in functional assays and cellular activity. The resulting molecules can serve as a simplified entry point for lead optimization and can be utilized to study this new mechanism of PRC2 inhibition and the associated biology in detail.


Assuntos
Inibidores Enzimáticos/química , Epigênese Genética , Metiltransferases/antagonistas & inibidores , Complexo Repressor Polycomb 2/química , Regulação Alostérica , Células CACO-2 , Cromatografia Líquida , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Espectrometria de Massas , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...