Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
New Phytol ; 242(6): 2430-2439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38586981

RESUMO

Calcium ion (Ca2+) serves as a versatile and conserved second messenger in orchestrating immune responses. In plants, plasma membrane-localized Ca2+-permeable channels can be activated to induce Ca2+ influx from extracellular space to cytosol upon pathogen infection. Notably, different immune elicitors can induce dynamic Ca2+ signatures in the cytosol. During pattern-triggered immunity, there is a rapid and transient increase in cytosolic Ca2+, whereas in effector-triggered immunity, the elevation of cytosolic Ca2+ is strong and sustained. Numerous Ca2+ sensors are localized in the cytosol or different intracellular organelles, which are responsible for detecting and converting Ca2+ signals. In fact, Ca2+ signaling coordinated by cytosol and subcellular compartments plays a crucial role in activating plant immune responses. However, the complete Ca2+ signaling network in plant cells is still largely ambiguous. This review offers a comprehensive insight into the collaborative role of intracellular Ca2+ stores in shaping the Ca2+ signaling network during plant immunity, and several intriguing questions for future research are highlighted.


Assuntos
Sinalização do Cálcio , Cálcio , Imunidade Vegetal , Cálcio/metabolismo , Citosol/metabolismo , Espaço Intracelular/metabolismo , Modelos Biológicos
2.
Plant J ; 119(1): 617-631, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38647454

RESUMO

Uncovering the function of phytopathogen effectors is crucial for understanding mechanisms of pathogen pathogenicity and for improving our ability to protect plants from diseases. An increasing number of effectors have been predicted in various plant pathogens. Functional characterization of these effectors has become a major focus in the study of plant-pathogen interactions. In this study, we designed a novel screening system that combines the TMV (tobacco mosaic virus)-GFP vector and Agrobacterium-mediated transient expression in the model plant Nicotiana benthamiana. This system enables the rapid identification of effectors that interfere with plant immunity. The biological function of these effectors can be easily evaluated by observing the GFP fluorescence signal using a UV lamp within just a few days. To evaluate the TMV-GFP system, we initially tested it with well-described virulence and avirulence type III effectors from the bacterial pathogen Ralstonia solanacearum. After proving the accuracy and efficiency of the TMV-GFP system, we successfully screened a novel virulence effector, RipS1, using this approach. Furthermore, using the TMV-GFP system, we reproduced consistent results with previously known cytoplasmic effectors from a diverse array of pathogens. Additionally, we demonstrated the effectiveness of the TMV-GFP system in identifying apoplastic effectors. The easy operation, time-saving nature, broad effectiveness, and low technical requirements of the TMV-GFP system make it a promising approach for high-throughput screening of effectors with immune interference activity from various pathogens.


Assuntos
Vetores Genéticos , Proteínas de Fluorescência Verde , Ensaios de Triagem em Larga Escala , Nicotiana , Doenças das Plantas , Ralstonia solanacearum , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/fisiologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/patogenicidade , Nicotiana/microbiologia , Nicotiana/genética , Nicotiana/virologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ralstonia solanacearum/patogenicidade , Ralstonia solanacearum/genética , Ralstonia solanacearum/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Doenças das Plantas/microbiologia , Vetores Genéticos/genética , Virulência , Agrobacterium/genética , Imunidade Vegetal/genética , Interações Hospedeiro-Patógeno/genética
4.
ACS Omega ; 9(4): 4647-4655, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313526

RESUMO

Ralstonia solanacearum can induce severe wilt disease in vital crops. Therefore, there is an urgent need to develop novel antifungal solutions. The natural compound 2,4-di-tert-butylphenol (2,4-DTBP) exhibits diverse physiological activities and affects soil function. However, its specific impact on the R. solanacearum remains unclear. Here, we investigated the antimicrobial potential of 2,4-DTBP. The results demonstrated that 2,4-DTBP effectively inhibited its growth and altered morphology. In addition, it substantially impeded biofilm formation, motility, and exopolysaccharide secretion. Transcriptomic analysis revealed that 2,4-DTBP inhibited energy production and membrane transport. Additionally, 2,4-DTBP hindered the growth by interfering with the membrane permeability, reactive oxygen species (ROS) production, and electrolyte leakage. Concomitantly, this led to a significant reduction in pathogenicity, as evidenced by the biomass of R. solanacearum in the invaded roots. Overall, our data strongly support the potential utility of 2,4-DTBP as a potent antibacterial agent capable of effectively preventing the onset of bacterial wilt caused by R. solanacearum.

5.
Biochem Biophys Res Commun ; 690: 149256, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992525

RESUMO

14-3-3 proteins play important roles in plant metabolism and stress response. Tomato 14-3-3 proteins, SlTFT4 and SlTFT7, serve as hubs of plant immunity and are targeted by some pathogen effectors. Ralstonia solanacearum with more than 70 type Ⅲ effectors (T3Es) is one of the most destructive plant pathogens. However, little is known on whether R. solanacearum T3Es target SlTFT4 and SlTFT7 and hence interfere with plant immunity. We first detected the associations of SlTFT4/SlTFT7 with R. solanacearum T3Es by luciferase complementation assay, and then confirmed the interactions by yeast two-hybrid approach. We demonstrated that 22 Ralstonia T3Es were associated with both SlTFT4 and SlTFT7, and five among them suppressed the hypersensitive response induced by MAPKKKα, a protein kinase which associated with SlTFT4/SlTFT7. We further demonstrated that suppression of MAPKKKα-induced HR and plant basal defense by the T3E RipAC depend on its association with 14-3-3 proteins. Our findings firstly demonstrate that R. solanacearum T3Es can manipulate plant immunity by targeting 14-3-3 proteins, SlTFT4 and SlTFT7, providing new insights into plant-R. solanacearum interactions.


Assuntos
Proteínas 14-3-3 , Ralstonia solanacearum , Proteínas 14-3-3/metabolismo , Proteínas de Bactérias/metabolismo , Imunidade Vegetal , Ralstonia solanacearum/fisiologia , Doenças das Plantas , Proteínas de Plantas/metabolismo
6.
J Matern Fetal Neonatal Med ; 36(2): 2285239, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010356

RESUMO

Objective: To evaluate the changes in cardiac morphology of fetuses with congenital heart disease (CHD) using the fetal heart quantitative technique (fetalHQ).Methods: A total of 20 normal pregnant women (control group) and 20 pregnant women suspected of fetal CHD (case group) were included in this study. The dynamic images of the four-chamber view of the fetal heart were recorded and analyzed using fetalHQ. The global sphericity index (GSI) and 24-segment SI of the two groups were compared. The differences in the left and right ventricular 24-segment SI for each group were investigated.Results: There was no statistically significant difference in the GSI between the two groups (p > 0.05). The difference in the SI values of left ventricular segments 1-2 between the case group and control group was statistically significant (all p < 0.05), while the intergroup difference in SI of left ventricular segments 3-24 was not significant (all p > 0.05). The SI of the 24 segments of the right ventricle showed no significant intergroup difference (all p > 0.05). The difference in the left and right ventricular 24-segment SI in the case group did not reach statistical significance (all p > 0.05). In the control group, the SI values between the left and right ventricles were significantly different in segments 18-24 (all p < 0.05), and no significant difference was found in segments 1-17 (all p > 0.05). There was a statistically significant intergroup difference in the percentage of unusual left ventricular SI, determined based on Z-score (p < 0.05), and the percentage of outliers for the right ventricle between the two groups showed no significant difference (p > 0.05).Conclusion: The fetalHQ is regarded as a straightforward and reliable approach for assessing the cardiac GSI and 24-segment SI of left and right ventricles in fetuses diagnosed with CHD. While CHD may not significantly impact the overall shape of the fetal heart or the geometric shape of the right ventricle, in this study, a notable increase in SI values for the left ventricular 1-2 segments was observed, indicating a more flattened ventricular chamber. Additionally, the morphological distinctions between the left and right ventricles in fetuses with CHD are no longer discernible.


Assuntos
Doenças Fetais , Cardiopatias Congênitas , Feminino , Humanos , Gravidez , Ultrassonografia Pré-Natal/métodos , Coração Fetal/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/anormalidades
7.
BMC Pregnancy Childbirth ; 23(1): 723, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821915

RESUMO

BACKGROUND: Whether intrauterine transmission of COVID-19 occurs remains uncertain, and it remains unclear whether the disease affects fetuses. We present a case of intrauterine transmission of SARS-CoV-2 infection and the prenatal ultrasonographic findings of the fetus in a pregnant woman with mild COVID-19. CASE PRESENTATION: A 30-year-old woman was admitted to our hospital for ultrasound examination in January 2023 at 26+ 3 weeks' gestation. Twenty-one days prior, her COVID-19 nucleic acid test was positive, and she had mild symptoms, including fever (38.3 °C), headache, chills, ankle pain and cough. After receiving symptomatic treatment, she fully recovered. Prenatal ultrasound revealed that the placenta was diffusely distributed with punctate echogenic foci, hepatomegaly, and the volume of bilateral lungs decreased significantly, with enhanced echo. In addition, we found that the surface of the fetal brain demonstrated widened gyri with a flattened surface. The prenatal MRI confirmed these fetal abnormalities. Amniotic fluid was tested for SARS-CoV-2, and the sample tested was positive for the virus. After careful consideration, the pregnant woman decided to terminate the pregnancy. CONCLUSION: The intrauterine transmission of COVID-19 is certain. Moreover, the intrauterine transmission of COVID-19 may cause abnormalities in various organs of the fetus.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Feminino , Gravidez , Humanos , Adulto , SARS-CoV-2 , Gestantes , Complicações Infecciosas na Gravidez/diagnóstico , Feto , Placenta/diagnóstico por imagem , Líquido Amniótico , Transmissão Vertical de Doenças Infecciosas , Ultrassonografia Pré-Natal
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1352-1357, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37846684

RESUMO

OBJECTIVE: To investigate the efficacy and safety of CD19/CD3 bisecific monoclonalantibody (Blinatumomab) in the treatment of adult patients with relapsed / refractory Ph-negative acute B-lymphoblastic leukemia (R/R-B-ALL). METHODS: Ten adult R/R B-ALL patients were all treated with Blinatumomab. Each treatment cycle was administered for 28 days and stopped for 14 days. The dose was 9 µg/day for the first 7 days of cycle 1, and 28 µg/day for days 8-28 if there were no adverse reactions. From the second cycle onwards, the daily dose was 28 µg. The remission, survival time (EFS and OS) and adverse reactions were observed after treatment. RESULTS: Nine patients with curative effect could be evaluated. Four patients achieved CR after one course, and one patient achieved CR after two courses, the overall remission rate was 55.6%(5/9). The median EFS was 4 months (1-12 months), and the median OS was 6 months (2-44 months). Nine of the 10 patients had fever of different degrees. Serum levels of cytokines such as IL-6, IL-10, IL-17 and IFN-γ increased. Two patients resumed medication after 1 week of treatment interruption due to neurotoxicity and CRS, respectively. One patient was discontinued due to grade 3 CRS and died of tropical candidiaemia. CONCLUSION: Blinatumomab has a good response rate in the treatment of relapsed/refractory B-ALL patients, but the duration of remission is shorter. Drug-related adverse reactions are mainly CRS and neurotoxicity. Inflammatory factors IL-6, IL-10, IL-17 and IFN-γ can be used as indicators to monitor CRS. The bisspecificity MAbs provide an opportunity for subsequent allogeneic hematopoietic stem cell transplantation in R/R-B-ALL patients.

9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 992-998, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37551467

RESUMO

OBJECTIVE: To detect the gene mutations in patients with myeloid malignancies by high-throughput sequencing and explore the correlation between gene mutations and prognosis. METHODS: A retrospective analysis was performed on 56 patients with myeloid malignancies who were hospitalized in the department of hematology, Peking University International Hospital from January 2020 to May 2021. The genetic mutations of the patients were detected by next-generation sequencing technology, and the correlation between the genetic mutations and prognosis of myeloid malignancies was analyzed. RESULTS: In 56 patients, the number of mutated genes detected in a single patient is 0-9, with a median of 3. Sequencing results showed that the most common mutated genes were RUNX1(21.4%), TET2(17.9%), DNMT3A(17.9%), TP53(14.3%) and ASXL1(14.3%), among which the most common mutations occurred in the signaling pathway-related genes (23.3%) and the transcription factor genes (18.3%). 84% of the patients carried multiple mutated genes (≥2), and correlation analysis showed there were obvious co-occurring mutations between WT1 and FLT3, NPM1 and FLT3-ITD, and MYC and FLT3. TP53 mutation was more common in MDS patients.The overall survival time of patients with NRAS mutation was significantly shortened (P =0.049). The prognosis of patients with TP53 mutation was poor compared with those without TP53 mutation, but the difference wasn't statistically significant (P =0.08). CONCLUSION: The application of next-generation sequencing technology is of great significance in myeloid malignancies, which is helpful to better understand the pathogenesis of the disease, to judge the prognosis and to find possible therapeutic targets.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Humanos , Leucemia Mieloide Aguda/genética , Nucleofosmina , Prognóstico , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação
10.
Front Microbiol ; 14: 1201444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293211

RESUMO

As one of the most destructive bacterial phytopathogens, Ralstonia solanacearum causes substantial annual yield losses of many important crops. Deciphering the functional mechanisms of type III effectors, the crucial factors mediating R. solanacearum-plant interactions, will provide a valuable basis for protecting crop plants from R. solanacearum. Recently, the NEL (novel E3 ligase) effector RipAW was found to induce cell death on Nicotiana benthamiana in a E3 ligase activity-dependent manner. Here, we further deciphered the role of the E3 ligase activity in RipAW-triggered plant immunity. We found that RipAWC177A, the E3 ligase mutant of RipAW, could not induce cell death but retained the ability of triggering plant immunity in N. benthamiana, indicating that the E3 ligase activity is not essential for RipAW-triggered immunity. By generating truncated mutants of RipAW, we further showed that the N-terminus, NEL domain and C-terminus are all required but not sufficient for RipAW-induced cell death. Furthermore, all truncated mutants of RipAW triggered ETI immune responses in N. benthamiana, confirming that the E3 ligase activity is not essential for RipAW-triggered plant immunity. Finally, we demonstrated that RipAW- and RipAWC177A-triggered immunity in N. benthamiana requires SGT1 (suppressor of G2 allele of skp1), but not EDS1 (enhanced disease susceptibility), NRG1 (N requirement gene 1), NRC (NLR required for cell death) proteins or SA (salicylic acid) pathway. Our findings provide a typical case in which the effector-induced cell death can be uncoupled with immune responses, shedding new light on effector-triggered plant immunity. Our data also provide clues for further in-depth study of mechanism underlying RipAW-induced plant immunity.

11.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239892

RESUMO

Ethylene Insensitive 2 (EIN2) is an integral membrane protein that regulates ethylene signaling towards plant development and immunity by release of its carboxy-terminal functional portion (EIN2C) into the nucleus. The present study elucidates that the nuclear trafficking of EIN2C is induced by importin ß1, which triggers the phloem-based defense (PBD) against aphid infestations in Arabidopsis. In plants, IMPß1 interacts with EIN2C to facilitate EIN2C trafficking into the nucleus, either by ethylene treatment or by green peach aphid infestation, to confer EIN2-dependent PBD responses, which, in turn, impede the phloem-feeding activity and massive infestation by the aphid. In Arabidopsis, moreover, constitutively expressed EIN2C can complement the impß1 mutant regarding EIN2C localization to the plant nucleus and the subsequent PBD development in the concomitant presence of IMPß1 and ethylene. As a result, the phloem-feeding activity and massive infestation by green peach aphid were highly inhibited, indicating the potential value of EIN2C in protecting plants from insect attacks.


Assuntos
Afídeos , Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Afídeos/fisiologia , Floema/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Plant Commun ; 4(6): 100628, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37221824

RESUMO

The plant signaling pathway that regulates pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) involves mitogen-activated protein kinase (MAPK) cascades that comprise sequential activation of several protein kinases and the ensuing phosphorylation of MAPKs, which activate transcription factors (TFs) to promote downstream defense responses. To identify plant TFs that regulate MAPKs, we investigated TF-defective mutants of Arabidopsis thaliana and identified MYB44 as an essential constituent of the PTI pathway. MYB44 confers resistance against the bacterial pathogen Pseudomonas syringae by cooperating with MPK3 and MPK6. Under PAMP treatment, MYB44 binds to the promoters of MPK3 and MPK6 to activate their expression, leading to phosphorylation of MPK3 and MPK6 proteins. In turn, phosphorylated MPK3 and MPK6 phosphorylate MYB44 in a functionally redundant manner, thus enabling MYB44 to activate MPK3 and MPK6 expression and further activate downstream defense responses. Activation of defense responses has also been attributed to activation of EIN2 transcription by MYB44, which has previously been shown to affect PAMP recognition and PTI development. AtMYB44 thus functions as an integral component of the PTI pathway by connecting transcriptional and posttranscriptional regulation of the MPK3/6 cascade.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Receptores de Superfície Celular/metabolismo
13.
Front Endocrinol (Lausanne) ; 14: 1146689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065765

RESUMO

Objectives: The aim of this study was to detect any gender bias in fetal malformation cases. Design: This study was a cross-sectional, quantitative survey. Subjects: Overall, 1,661 Asian fetal malformation cases involving induced abortions in the obstetrics department of the first Affiliated Hospital of Zhengzhou University from 2012 to 2021 were included. Main outcome measures: Measurements of ultrasound detectable structural malformations were classified into 13 subtypes. Karyotyping, single nucleotide polymorphism (SNP) array, or sequencing diagnosis of these fetus was also included in the outcome measures. Results: The sex ratio (male/female) of all malformation types was 1.446. Cardiopulmonary had the highest proportion of all malformation types with 28%. Diaphragmatic hernia, omphalocele, gastroschisis, nuchal translucency (NT), and Multy malformations had significantly higher proportions of males (p < 0.05). Digestive system malformations had a significantly higher proportion of females (p < 0.05). Maternal age was associated with genetic factors (r = 0.953, p < 0.001) and inversely associated with brain malformations (r = -0.570, p = 0.002). More males were found with trisomy 21, trisomy 18, and monogenetic diseases, while duplications, deletions, and uniparental disomy (UPD) had similar sex ratios between males and females, but not statistically significant. Conclusion: Sex differences are common with fetal malformations, with higher proportions of males. Genetic testing has been proposed to account for these differences.


Assuntos
Síndrome de Down , Sexismo , Gravidez , Humanos , Feminino , Masculino , Estudos Transversais , Síndrome de Down/diagnóstico , Cariotipagem , Testes Genéticos
14.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203354

RESUMO

Bacterial wilt, caused by Ralstonia solanacearum, one of the most destructive phytopathogens, leads to significant annual crop yield losses. Type III effectors (T3Es) mainly contribute to the virulence of R. solanacearum, usually by targeting immune-related proteins. Here, we clarified the effect of a novel E3 ubiquitin ligase (NEL) T3E, RipAW, from R. solanacearum on pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and further explored its action mechanism. In the susceptible host Arabidopsis thaliana, we monitored the expression of PTI marker genes, flg22-induced ROS burst, and callose deposition in RipAW- and RipAWC177A-transgenic plants. Our results demonstrated that RipAW suppressed host PTI in an NEL-dependent manner. By Split-Luciferase Complementation, Bimolecular Fluorescent Complimentary, and Co-Immunoprecipitation assays, we further showed that RipAW associated with three crucial components of the immune receptor complex, namely FLS2, XLG2, and BIK1. Furthermore, RipAW elevated the ubiquitination levels of FLS2, XLG2, and BIK1, accelerating their degradation via the 26S proteasome pathway. Additionally, co-expression of FLS2, XLG2, or BIK1 with RipAW partially but significantly restored the RipAW-suppressed ROS burst, confirming the involvement of the immune receptor complex in RipAW-regulated PTI. Overall, our results indicate that RipAW impairs host PTI by disrupting the immune receptor complex. Our findings provide new insights into the virulence mechanism of R. solanacearum.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ralstonia solanacearum , Complexo Antígeno-Anticorpo , Reconhecimento da Imunidade Inata , Espécies Reativas de Oxigênio , Imunoprecipitação , Receptores Imunológicos , Proteínas Serina-Treonina Quinases , Proteínas de Arabidopsis/genética
15.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499365

RESUMO

RING-finger-type ubiquitin E3 ligase Constitutively Photomorphogenic 1 (COP1) and floral integrators such as FLOWERING LOCUS T (FT), TWIN SISTER OF FT (TSF) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) have been identified as regulators of stomatal movement. However, little is known about their roles and relationship in dark-induced stomatal closure. Here, we demonstrated that COP1 is required for dark-induced stomatal closure using cop1 mutant. The cop1 mutant closed stomata in response to exogenous nitric oxide (NO) but not hydrogen peroxide (H2O2), and H2O2 but not NO accumulated in cop1 in darkness, further indicating that COP1 acts downstream of H2O2 and upstream of NO in dark-induced stomatal closure. Expression of FT, TSF and SOC1 in wild-type (WT) plants decreased significantly with dark duration time, but this process was blocked in cop1. Furthermore, ft, tsf, and soc1 mutants accumulated NO and closed stomata faster than WT plants in response to darkness. Altogether, our results indicate that COP1 transduces H2O2 signaling, promotes NO accumulation in guard cells by suppressing FT, TSF and SOC1 expression, and consequently leads to stomatal closure in darkness. These findings add new insights into the mechanisms of dark-induced stomatal closure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Estômatos de Plantas/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteína de Ligação a Fosfatidiletanolamina/genética
16.
Mol Plant ; 15(11): 1772-1789, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207815

RESUMO

Eukaryotic aquaporins share the characteristic of functional multiplicity in transporting distinct substrates and regulating various processes, but the underlying molecular basis for this is largely unknown. Here, we report that the wheat (Triticum aestivum) aquaporin TaPIP2;10 undergoes phosphorylation to promote photosynthesis and productivity and to confer innate immunity against pathogens and a generalist aphid pest. In response to elevated atmospheric CO2 concentrations, TaPIP2;10 is phosphorylated at the serine residue S280 and thereafter transports CO2 into wheat cells, resulting in enhanced photosynthesis and increased grain yield. In response to apoplastic H2O2 induced by pathogen or insect attacks, TaPIP2;10 is phosphorylated at S121 and this phosphorylated form transports H2O2 into the cytoplasm, where H2O2 intensifies host defenses, restricting further attacks. Wheat resistance and grain yield could be simultaneously increased by TaPIP2;10 overexpression or by expressing a TaPIP2;10 phosphomimic with aspartic acid substitutions at S121 and S280, thereby improving both crop productivity and immunity.


Assuntos
Aquaporinas , Triticum , Triticum/metabolismo , Dióxido de Carbono/metabolismo , Fosforilação , Peróxido de Hidrogênio , Grão Comestível , Aquaporinas/genética
17.
Front Plant Sci ; 13: 1040826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311066

RESUMO

Ralstonia solanacearum causes devastating diseases in a wide range of economically important crops. It secretes a large number of virulence factors, also known as effectors, to promote its infection, and some of them are recognized when the host plant contains corresponding resistance genes. In this study we showed that a type III effector RipTPS from the avirulent R. solanacearum strain GMI1000 (RipTPSG) specifically induced cell death in Nicotiana tabacum, but not in Nicotiana benthamiana, whereas the RipTPS homolog in the virulent strain CQPS-1 (RipTPSC) induced cell death in neither N. tabacum nor N. benthamiana. These results indicated that RipTPSG is recognized in N. tabacum. Expression of RipTPSG induced upregulation of hypersensitive response (HR) -related genes in N. tabacum. The virulence of CQPS-1 was reduced when RipTPSG was genetically introduced into CQPS-1, further confirming that RipTPSG functions as an avirulence determinant. Protein sequence alignment indicated that there are only three amino acid polymorphisms between RipTPSG and RipTPSC. Site-directed mutagenesis analyses confirmed that the three amino acid residues are jointly required for the recognition of RipTPSG in N. tabacum. Expression of either RipTPSG or RipTPSC suppressed flg22-triggered reactive oxygen species (ROS) burst in N. benthamiana, suggesting that RipTPS contributes to pathogen virulence. Mutating the conserved residues in RipTPS's trehalose-phosphate synthase (TPS) domain did not block its HR induction and defense suppression activity, indicating that the TPS activity is not required for RipTPS's avirulence and virulence function.

18.
Biochem Biophys Res Commun ; 631: 18-24, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36162325

RESUMO

Ralstonia solanacearum, the causal agent of bacterial wilt, causes devastating diseases in a wide range of plants including potato, tomato, pepper and tobacco. The pathogen delivers approximately 70 type III effectors (T3Es) into plant cells during infection. In this study, we confirmed that a T3E RipB is recognized in tobacco. We further demonstrated that RipB is conserved among R. solanacearum isolates and five different ripB alleles are all recognized in tobacco. The ripB from GMI1000 was transformed into susceptible host Arabidopsis, and a defect in root development was observed in ripB-transgenic plants. Pathogen inoculation assays showed that ripB expression promoted plant susceptibility to R. solanacearum infection, indicating that RipB contributes to pathogen virulence in Arabidopsis. Expression of ripB in roq1 mutant partially suppressed reactive oxygen species production, confirming that RipB interferes with plant basal defense. Interestingly, ripB expression promoted cytokinin-related gene expression in Arabidopsis, suggesting a role of cytokinin signaling pathway in plant-R. solanacearum interactions. Finally, RipB harbors potential 14-3-3 binding motifs, but the associations between RipB and 14-3-3 proteins were undetectable in yeast two-hybrid assay. Together, our results demonstrate that multiple ripB alleles are recognized in Nicotiana, and RipB suppresses basal defense in susceptible host to promote R. solanacearum infection.


Assuntos
Arabidopsis , Ralstonia solanacearum , Proteínas 14-3-3/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Citocininas/metabolismo , Suscetibilidade a Doenças , Doenças das Plantas/microbiologia , Plantas/metabolismo , Ralstonia solanacearum/genética , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...