Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 245: 123462, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35436732

RESUMO

Currently, researches on nanomaterials have been restricted by slow and multistep synthesis procedures. Herein, we demonstrate an ultrafast, one step method of purification and delivery of quantum dots into living cells, actuated by the acoustic streaming (AS) produced through a gigahertz resonator. Results demonstrate that the impurities in the carbon dots (CDs) can be extracted immediately aided by the acoustic forcing, with extra high purification efficiency of 93%. The system can also efficiently deliver the CDs into cells, showing excellent nucleus and mitochondria uptake under 3 min of AS treatment, and making the organelles of cells to be recorded more easily and simultaneously. More importantly, the AS is found to further accelerate the bioreaction inside the cells, thus realizes the enhanced biosensing of Fe3+ in single living cells. This work develops a novel type of multifunctional method for effective purification, intracellular delivery and biosensing of nanomaterials, inspiring the biological/medical nanotechnology researches at subcellular level.


Assuntos
Nanoestruturas , Pontos Quânticos , Acústica , Carbono , Corantes Fluorescentes , Mitocôndrias
2.
ACS Omega ; 6(28): 18414-18425, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308072

RESUMO

In this study, a series of X-type zeolite molecular sieve catalysts, modified with copper (Cu-X), were prepared by an alkali fusion-hydrothermal synthesis using coal gangue from Inner Mongolia. These catalysts were used in the degradation of the methylene blue dye by a Fenton-like reaction. Characterization results showed that Cu is considered to be present in the surface structure of the zeolite in the form of doped Cu ions and metal oxide. It is believed that Cu2+ is the main active site involved in the Fenton reaction. The X-ray photoelectron spectroscopy (XPS) spectra indicated that Cu2+ and Cu+ coexist in the catalysts and participate together in the Fenton reaction. The degradation of methylene blue by the Cu-X catalysts was investigated to determine the optimal catalytic conditions in terms of six aspects: catalyst dosage, initial solution concentration, initial pH of the solution, H2O2 dosage, copper loading, and reaction temperature. The experimental results showed that CX-1.0 had excellent activity and stability for the degradation and decolorization of the methylene blue dye, which could completely degrade the dye within 90 min, and the total organic carbon removal rate reached as high as 97.8%. Electron spin resonance (ESR) and radical capture experiments showed that •OH played a dominant role in the Fenton-like reaction. Combined with XPS, ESR, and catalytic tests, the redox cycle of Cu+/Cu2+ was found to be accelerating the generation of reactive radicals in the Fenton system.

3.
Lab Chip ; 21(10): 1948-1955, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34008612

RESUMO

The development of rapid and efficient tools to modulate neurons is vital for the treatment of nervous system diseases. Here, a novel non-invasive neurite outgrowth modulation method based on a controllable acoustic streaming effect induced by an electromechanical gigahertz resonator microchip is reported. The results demonstrate that the gigahertz acoustic streaming can induce cell structure changes within a 10 min period of stimulation, which promotes a high proportion of neurite bearing cells and encourages longer neurite outgrowth. Specifically, the resonator stimulation not only promotes outgrowth of neurites, but also can be combined with chemical mediated methods to accelerate the direct entry of nerve growth factor (NGF) into cells, resulting in higher modulation efficacy. Owing to shear stress caused by the acoustic streaming effect, the resonator microchip mediates stress fiber formation and induces the neuron-like phenotype of PC12 cells. We suggest that this method may potentially be applied to precise single-cell modulation, as well as in the development of non-invasive and rapid disease treatment strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...