Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4593, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597916

RESUMO

Charged defects at the surface of the organic-inorganic perovskite active layer are detrimental to solar cells due to exacerbated charge carrier recombination. Here we show that charged surface defects can be benign after passivation and further exploited for reconfiguration of interfacial energy band structure. Based on the electrostatic interaction between oppositely charged ions, Lewis-acid-featured fullerene skeleton after iodide ionization (PCBB-3N-3I) not only efficiently passivates positively charged surface defects but also assembles on top of the perovskite active layer with preferred orientation. Consequently, PCBB-3N-3I with a strong molecular electric dipole forms a dipole interlayer to reconfigure interfacial energy band structure, leading to enhanced built-in potential and charge collection. As a result, inverted structure planar heterojunction perovskite solar cells exhibit the promising power conversion efficiency of 21.1% and robust ambient stability. This work opens up a new window to boost perovskite solar cells via rational exploitation of charged defects beyond passivation.

2.
Adv Mater ; 31(41): e1903691, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31456294

RESUMO

The poor long-term stability of organic-inorganic hybrid halide perovskite solar cells (pero-SCs) remains a big challenge for their commercialization. Although strategies such as encapsulation, doping, and passivation have been reported, there remains a lack of understanding of the water resistance and thermal stability of pero-SCs. A fullerene derivative, [6,6]-phenyl-C61 -butyric acid-N,N-dimethyl-3-(2-thienyl)propanam ester (PCBB-S-N) containing a functional sulfur atom and C60, is synthesized and employed as electron transporting layer (ETL)/intermediary layer to targetedly heal the multitype defects in pero-SCs or assist the growth of ETL, such as [6,6]-phenyl-C61 -butyric acid methyl ester (PCBM), in planar p-i-n pero-SCs. The repaired pero-SCs can not only dramatically improve their power conversion efficiencies, but also address stability issues under moisture and high temperature. The corresponding mechanism of PCBB-S-N with targeted therapy effect in a device is systematically investigated by both experiments and theoretical calculation. This work demonstrates that the proposed fullerene derivative with finely tuned chemical structure can be a promising ETL candidate or intermediary to approach stable and efficient planar p-i-n pero-SCs.

3.
Adv Mater ; 31(10): e1807159, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30663145

RESUMO

Neutral-colored semitransparent organic solar cells (ST-OSCs) have attracted considerable attention owing to their unique application in no-visual-obstacle building-integrated photovoltaics. Toward this promising potential application, a synergistic effect is first proposed by employing a dielectric mirror and ternary photoactive layer with near-infrared absorption to tune the color perception as well as ST-OSC performance precisely. As a result, a neutral-color ST-OSC with high average transmittance of over 21% is successfully constructed, and a remarkable color-rendering index approaching 100 and high power conversion efficiency (PCE) of 9.37% are simultaneously achieved. To the best of our knowledge, this is the highest PCE reported for neutral-color ST-OSCs to date. Importantly, this synergistic effect is demonstrated to be a universal strategy that is not only suitable for various photoactive layer systems, but can also be implanted in flexible substrate. The resulting neutral-color flexible ST-OSCs also show a promising PCE of 8.76%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...