Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 917: 148460, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38604506

RESUMO

IGFBP3 (Insulin-like growth factor binding protein 3) constitutes a crucial constituent of the insulin-like growth factor (IGF), which are intimately associated with the organism's growth and development processes. Despite its significance, the precise function of IGFBP3 in yak liver development remains largely unexplored. In the present study, we systematically examined the expression profile of IGFBP3 in the liver tissues of yaks across various growth stages, elucidated its influence on the activity of yak hepatocytes, and probed its effects on murine liver development. A comparative analysis revealed that the expression of IGFBP3 was significantly higher in the liver tissue of 5-year-old yaks compared to their 15-month-old and 1-day-old counterparts (P < 0.01). To further validate its biological function, pET-28a-BgIGFBP3 prokaryotic expression vector was constructed. Upon exposing yak hepatocytes to varying concentrations of Bos grunniens (Bg) IGFBP3 protein, we observed augmented cellular activities and elevated colony formation rates. Moreover, our investigation revealed the upregulation of key genes within the PI3K-Akt signaling pathway, including ERBB2, IRS1, PIK3R1, AKT1, RAF1, MAP2K2, and MAPK3, in both yak hepatocyte cultures and murine models. These findings collectively indicate that BgIGFBP3 promotes the proliferation of yak hepatocytes and enhances murine liver development by modulating the PI3K-Akt signaling pathway. The functional relevance of BgIGFBP3 was substantiated through in vivo and in vitro experiments, thereby underscoring its potential as a regulatory factor in liver development processes.


Assuntos
Proliferação de Células , Hepatócitos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Hepatócitos/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Bovinos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Camundongos , Fígado/metabolismo , Células Cultivadas
2.
Funct Integr Genomics ; 23(3): 274, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574510

RESUMO

The main aim of the current work was to explore the differential metabolites and differentially expressed genes of longissimus dorsi muscle (LDM) between castrated and uncastrated fattening male South Sichuan black goats (Capra hircus). Then, the key genes regulating important differential metabolites (DMs) in castrated male goats were observed by integrated metabolomics and transcriptomics analyses. In addition, we evaluated the effects of castration on blood constituents, dressing percentage, and water holding capacity of LDM in male black goats. The results showed that the concentrations of alkaline phosphatase (ALP), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) were significantly increased and testosterone was significantly decreased in castrated male goats compared with the uncastrated male goats, while dressing percentage of black goats and water holding capacity of longissimus dorsi muscle were not significant differences. Through metabolomics and transcriptomics analyses, 23 important KEGG pathways, 13 important DMs, 32 important differentially expressed genes (DEGs), and 13 key genes related to the "Metabolism" and "Organismal systems" pathways were screened. Lipid accumulation may be elevated in the blood of fattening South Sichuan black goats after castration. Castration might play a positive role in energy provision, intercellular signaling, muscle function, softening of meat, disease reduction, and anti-oxidation of LDM. P4HA2, AKR1B1, GPT2, L2HGDH, ENSCHIG00000021660, ENSCHIG00000023861, DGAT2, ULK1, SLC38A3, PLA2G4A, SLC6A1, ENSCHIG00000026624, and ND2 might be the key genes regulating important DMs in the KEGG pathways related to "Metabolism" and "Organismal systems" of castrated male goats compared with the uncastrated male goats.


Assuntos
Cabras , Transcriptoma , Animais , Masculino , Cabras/genética , Metabolômica , Músculo Esquelético/metabolismo , Colesterol/metabolismo
3.
Funct Integr Genomics ; 23(2): 124, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37055595

RESUMO

The aim of the present study was to evaluate the effects of Bacillus amyloliquefaciens fsznc-06 and Bacillus pumilus fsznc-09 on the expressions of spleen genes in weanling Jintang black goats. Bacillus amyloliquefaciens fsznc-06 (BA-treated group) and Bacillus pumilus fsznc-09 (BP-treated group) were directly fed to goats, and the spleens were harvested for transcriptome analysis. The KEGG pathway analysis showed that the differentially expressed genes (DEGs) in BA-treated vs CON group were mainly involved in digestive system and immune system, while those in BP-treated vs CON group were mainly involved in immune system, and those in BA-treated vs BP-treated group were mainly involved in digestive system. In conclusion, Bacillus amyloliquefaciens fsznc-06 might promote the expressions of genes related to immune system and digestive system, reduce the expressions of disease genes related to digestive system and might promote mutual accommodation of some immune genes in weanling black goat. Bacillus pumilus fsznc-09 might promote the expressions of genes related to immune system and mutual accommodation of some immune genes in weanling black goat. Bacillus amyloliquefaciens fsznc-06 has advantages over Bacillus pumilus fsznc-09 in promoting the expressions of genes related to digestive system and mutual accommodation of some immune genes.


Assuntos
Bacillus amyloliquefaciens , Bacillus pumilus , Animais , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Baço , Cabras/genética , Perfilação da Expressão Gênica , Transcriptoma
4.
Res Vet Sci ; 153: 1-7, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36272178

RESUMO

Urea is frequently used as a protein supplement in ruminant diets, but if used improperly, it can easily result in urea poisoning. The purpose of this study was to explore the effects of excessive urea feeding on rumen pathology and microbial diversity of the Jianzhou Da'er goat (Capra hircus). In this study, 9 male Jianzhou Da'er goats with an average weight of 22.9 kg were randomly divided into the control group (0% urea), 5% urea group and 10% urea group (dry matter basis, 3 goats per group). Morphological differences of rumen tissues were analyzed by Hematoxylin-Eosin staining and Prussian blue staining, and rumen microorganisms differences were analyzed by 16S rDNA sequencing on the Illumina Novaseq platform. Histopathological analysis showed that the length of rumen papilla in the 5% urea and 10% urea groups were shortened compared to the control group, and the thickness of the stratum corneum and muscular layer were significantly thinned (P < 0.05). 16S rRNA sequencing analysis indicated that microbial richness and diversity were significantly lower in goats fed on 5% urea or 10% urea, the abundance of Prevotella ruminicola was significantly decreased (P < 0.05), and the abundance of Ruminobacter amylophilus was significantly increased (P < 0.05), as compared with the control group. This study indicated that feeding 5% and 10% urea could damage rumen tissue morphology. Feeding 10% urea significantly reduced rumen microbial diversity and the abundance of Prevotella ruminicola, but increased the abundance of Ruminobacter amylophilus.

5.
J Anim Physiol Anim Nutr (Berl) ; 105(4): 797-805, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33675272

RESUMO

An increasing number of Bacillus strains have been developed for use as animal feed additives. The aim of the current work was to evaluate the impacts of Bacillus pumilus fsznc-09 in growth performance, organs development, blood constituents, genes expression of growth and immune in spleen and microbial communities in jejunum of weanling mice. The results showed that the body weight of mice in BP1 group increased significantly (p < 0.05) after feeding Bacillus pumilus fsznc-09. Compared with control group, the feed conversion ratio of BP1 and BP2 groups showed 13.57% (p < 0.05) and 9.64% improvements, respectively. The lengths of large intestine, small intestine in BP1 group were significantly increased (p < 0.05). While compared with control group, the organ indexes in BP1 and BP2 group did not differ significantly. Compared with control group, the activities of serum total superoxide dismutase (T-SOD), alkaline phosphatase (AKP), lysozyme (LZM) in BP1 group and T-SOD, AKP in BP2 group were significantly increased (p < 0.05). Compared with control group, the expressions of ghrelin-2 (Ghrl-2) and insulin-like growth factor 1 (Igf1) in BP1 group were significantly increased (p < 0.05). Compared with control group, the expressions of interleukin-6 (IL-6), nitric oxide synthase (INOS), tumour necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) in BP1 group and the expressions of IL-6, INOS, TNF-α, IL-1ß and interferon alpha 11 (Ifna11) in BP2 group were slightly decreased. Moreover, compared with control group, the diversity of intestinal flora and relative abundance of potentially probiotics (e.g., Bifidobacterium, Bacillus) in BP1 and BP2 groups were increased. While compared with control group, the relative abundance of the potentially pathogenic bacterium (e.g., Staphylococcus) was reduced. The relative abundances of dominant species in BP1 (Lactobacillus johnsonii) and BP2 (Lactobacillus reuteri) groups were also higher than control group (Lactobacillus intestinalis). In conclusion, Bacillus pumilus fsznc-09 might improve the growth performance and immunity of mice.


Assuntos
Bacillus pumilus , Microbioma Gastrointestinal , Probióticos , Ração Animal/análise , Animais , Lactobacillus , Camundongos
6.
Animals (Basel) ; 10(9)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916846

RESUMO

The importance of Bacillus as feed additives in animals' production is well recognized. Bacillus amyloliquefaciens and Bacillus pumilus are involved in promoting animal growth performance and immunological indicators. However, their precise roles in the modulation of microbiota and immune response in goat rumen and intestines have not been investigated. The aim of the current work was to evaluate the impacts of Bacillus amyloliquefaciens fsznc-06 and Bacillus pumilus fsznc-09 in the development of rumen and small intestinal and microbial communities in rumen and caecum of weanling Jintang black goats. Morphological alterations of rumen and small intestine (duodenum, jejunum, and ileum) were evaluated by histochemical staining, and ruminal contents and cecal feces were analyzed by 16S rRNA sequencing in an Illumina NovaSeq platform. Morphological analysis showed that feeding weanling goats with Bacillus amyloliquefaciens fsznc-06 or Bacillus pumilus fsznc-09 enhanced ruminal papilla and small intestinal villus growth. In addition, 16S rRNA sequencing analysis indicated that microbial richness and diversity (Shannon, Simpson, Chao1, and ACE) and the relative richness of multiple or potential beneficial bacteria were higher in weaned black goats fed on Bacillus amyloliquefaciens fsznc-06 or Bacillus pumilus fsznc-09, but that of multiple or potentially pathogenic bacteria were lower, as compared with the control group. Tax4Fun analysis predicting the functional profiling of microbial communities showed that microbial communities in rumen or caecum were highly influential on metabolism and organism systems after feeding weanling goats with Bacillus amyloliquefaciens fsznc-06 or Bacillus pumilus fsznc-09. It was suggested that Bacillus amyloliquefaciens fsznc-06 and Bacillus pumilus fsznc-09 might be an auspicious antibiotic alternative to improve black goat growth and health by changing rumen and gut microbiota positively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...