Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 239: 115919, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134707

RESUMO

Testicular dysfunction is distinguished by a deficiency in testosterone levels, which can be attributed to the occurrence of oxidative stress injury in Leydig cells. The empirical prescription known as Bushen Zhuanggu Tang, developed by a highly experienced traditional Chinese medicine practitioner with six decades of clinical expertize, aligns with the traditional Chinese medicine principle of "kidney governing bone". Researchers have demonstrated that the administration of BSZGT can effectively enhance testosterone production. The objective of this study is to investigate the potential anti-testicular dysfunction effects of BSZGT and elucidate its underlying mechanism in an in vitro setting. Specifically, the impact of oxidative stress induced by H2O2 on the activity and testosterone levels of Leydig cells (TM3) was examined. Furthermore, the utilization of UPLC-QE-Qrbitrap-MS enabled the identification of the involvement of BSZGT in various metabolic pathways, including arginine biosynthesis, amino acyl-tRNA biosynthesis, Alanine, aspartate and glutamine metabolism, and Citrate Cycle, through the modulation of 25 distinct metabolites. Additionally, a network pharmacological analysis was conducted to investigate the pivotal protein targets associated with the therapeutic effects of BSZGT. The findings demonstrate the identification of six key proteins (CYP19A1, CYP1B1, ALOX5, ARG1, XDH, and MPO) that play a significant role in augmenting testicular function through their involvement in the ovarian steroid production pathway. In summary, our study presents a comprehensive research methodology that combines cell metabonomics and network pharmacology to enhance the discovery of new therapeutic agents for TD.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Masculino , Humanos , Peróxido de Hidrogênio , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolômica/métodos , Testosterona
2.
Artigo em Inglês | MEDLINE | ID: mdl-38155401

RESUMO

BACKGROUND: Asthma is a chronic inflammatory disease of the airways that seriously endangers human health. Belamcanda chinensis (BC), a traditional Chinese medicine, has been used to counteract asthma as it has been shown to possess anti-inflammatory and regulatory immunity properties. OBJECTIVE: The study aimed to investigate the mechanisms of action of BC in the treatment of asthma; a "dose-effect weighted coefficient" network pharmacology method was established to predict potential active compounds. METHODS: Information on the components and content of BC was obtained by UPLC-QEOrbitrap- MS spectrometry. Based on BC content, oral bioavailability, and molecular docking binding energy, dose-effect weighting coefficients were constructed. With the degree greater than average as the index, a protein-protein interaction (PPI) database was used to obtain the core key targets for asthma under dose-effect weighting. GO function and KEGG pathway analyses of the core targets were performed using DAVID software. Finally, MTT and ELISA assays were used to assess the effects of active components on 16HBE cell proliferation. RESULTS: The experimental results using the 16HBE model demonstrated BC to have a potential protective effect on asthma. Network pharmacology showed SYK, AKT1, and ALOX5 to be the main key targets, and Fc epsilon RI as the promising signaling pathway. Eight components, such as tectoridin, mangiferin, luteolin, and isovitexin were the main active compounds, Finally, we analyzed the LPS-induced 16HBE proliferation of each active ingredient. Based on the activity verification study, all five predicted components promoted the proliferation of 16HBE cells. These five compounds can be used as potential quality markers for asthma. CONCLUSION: This study provides a virtual and practical method for the simple and rapid screening of active ingredients in natural products.

3.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241805

RESUMO

Testicular dysfunction (TDF) is characterized by testosterone deficiency and is caused by oxidative stress injury in Leydig cells. A natural fatty amide named N-benzylhexadecanamide (NBH), derived from cruciferous maca, has been shown to promote testosterone production. Our study aims to reveal the anti-TDF effect of NBH and explore its potential mechanism in vitro. This study examined the effects of H2O2 on cell viability and testosterone levels in mouse Leydig cells (TM3) under oxidative stress. In addition, cell metabolomics analysis based on UPLC-Q-Exactive-MS/MS showed that NBH was mainly involved in arginine biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, the TCA cycle and other metabolic pathways by affecting 23 differential metabolites, including arginine and phenylalanine. Furthermore, we also performed network pharmacological analysis to observe the key protein targets in NBH treatment. The results showed that its role was to up-regulate ALOX5, down-regulate CYP1A2, and play a role in promoting testicular activity by participating in the steroid hormone biosynthesis pathway. In summary, our study not only provides new insights into the biochemical mechanisms of natural compounds in the treatment of TDF, but also provides a research strategy that integrates cell metabolomics and network pharmacology in order to promote the screening of new drugs for the treatment of TDF.


Assuntos
Lepidium , Espectrometria de Massas em Tandem , Camundongos , Masculino , Animais , Lepidium/química , Farmacologia em Rede , Peróxido de Hidrogênio , Alcamidas Poli-Insaturadas , Testosterona , Metabolômica
4.
Molecules ; 27(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558193

RESUMO

The neuroprotective properties of ginsenosides have been found to reverse the neurological damage caused by oxidation in many neurodegenerative diseases. However, the distribution of ginsenosides in different tissues of the main root, which was regarded as the primary medicinal portion in clinical practice was different, the specific parts and specific components against neural oxidative damage were not clear. The present study aims to screen and determine the potential compounds in different parts of the main root in ginseng. Comparison of the protective effects in the main root, phloem and xylem of ginseng on hydrogen peroxide-induced cell death of SH-SY5Y neurons was investigated. UPLC-Q-Exactive-MS/MS was used to quickly and comprehensively characterize the chemical compositions of the active parts. Network pharmacology combined with a molecular docking approach was employed to virtually screen for disease-related targets and potential active compounds. By comparing the changes before and after Content-Effect weighting, the compounds with stronger anti-nerve oxidative damage activity were screened out more accurately. Finally, the activity of the selected monomer components was verified. The results suggested that the phloem of ginseng was the most effective part. There were 19 effective compounds and 14 core targets, and enriched signaling pathway and biological functions were predicted. After Content-Effect weighting, compounds Ginsenosides F1, Ginsenosides Rf, Ginsenosides Rg1 and Ginsenosides Rd were screened out as potential active compounds against neural oxidative damage. The activity verification study indicated that all four predicted ginsenosides were effective in protecting SH-SY5Y cells from oxidative injury. The four compounds can be further investigated as potential lead compounds for neurodegenerative diseases. This also provides a combined virtual and practical method for the simple and rapid screening of active ingredients in natural products.


Assuntos
Ginsenosídeos , Neuroblastoma , Panax , Humanos , Espectrometria de Massas em Tandem/métodos , Ginsenosídeos/química , Panax/química , Simulação de Acoplamento Molecular , Floema/metabolismo , Estresse Oxidativo , Cromatografia Líquida de Alta Pressão/métodos
5.
Toxicol In Vitro ; 85: 105459, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36030031

RESUMO

Forkhead Box O1 (FoxO1) is a transcription factor with a unique fork head domain that indirectly participates in a variety of physiological processes and plays an important role in type 2 diabetes. Palmitate as the most abundant free fatty acid, accounting for 28-32% of total free fatty acids in human plasma. There is a direct relationship between palmitate and insulin resistance-induced type 2 diabetes. In addition, palmitate can activate the unfolded protein response signaling pathway induced by endoplasmic reticulum (ER) stress. This study aimed to investigate the response of FoxO1 to palmitate and the relationship with ER stress in C2C12 myotubes. Treatment of palmitate or tunicamycin promoted ER stress-related genes expression but suppressed FoxO1 expression, while 4-phenylbutyrate presented the opposite activity in palmitate-pretreated C2C12 myotubes, indicating that ER stress might be closely associated with FoxO1 expression. Moreover, palmitate-suppressed FoxO1 expression was reversed in C2C12 cells when the PERK and IRE-1 signaling pathway was inhibited by treatment with GSK2656157 or 4µ8C. However, no differences were observed when the ATF6 signaling pathway was suppressed by knockout of the ATF6 gene. These findings suggest that palmitate suppressed FoxO1 expression via the PERK and IRE1 signaling pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Palmitatos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Proteína Forkhead Box O1/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Palmitatos/farmacologia , Proteínas Serina-Treonina Quinases , Fatores de Transcrição/genética , Tunicamicina , Resposta a Proteínas não Dobradas
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120419, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34619506

RESUMO

Nitroaromatic compounds (NACs) can lead to various environmental pollution healh problems. In order to effectively recognize and sense NACs, a novel coordination polymers (CPs) with fluorescent characteristic [Zn3(btc)2(tpt)(H2O)2]·4H2O (1) (tpt = tris(4-pyridyl)triazine, H3btc = 1,3,5-benzenetricarboxylic acid) has been triumphantly prepared as an fluorescence probe by solvothermal method. 1 possesses remarkable PH stability ranging from 2.0 to 12.0 and is also stable in different pure organic solvents. It should be noted that 1 manifests a fluorescence quenching response against the detection of selectivity and sensitivity towards 2,4,6-trinitrophenol (TNP) in aqueous solution. It also makes analysis on the limit of detection towards TNP, which is as low as 0.94 µM compared with most reported CPs sensors for TNP. Therefore, 1 can become a satisfactory sensor for TNP detection with remarkable selectivity, strong anti-interference and favorable recyclability. In addition, the quenching mechanisms were also discussed. It was supposed that the mechanisms of photoinduced electron transfer (PET) as well as resonance energy transfer (RET) might be the main influencing factors.


Assuntos
Luminescência , Polímeros , Picratos , Zinco
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 242: 118790, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32795950

RESUMO

A new luminescence Cd(II)-MOF (1) ([Cd3(BTC)2(TPT)(H2O)2]·4H2O, TPT = tris(4-pyridyl)triazine, H3BTC = 1,3,5-benzenetricarboxylic acid) was successfully synthesized under solvothermal conditions. 1 contains 3D framework which consist of Cd atoms and btc3- anions with the large channels along c axis. Then, tpt ligands locate in the channels by utilizing three N atoms to bridge two Cd1 atoms and one Cd2 atom. 1 not only possesses remarkable thermal stability, but also can steadily exist in different organic solvents and various acid/base solutions (pH = 3-12). Moreover, 1 can detect 2,4,6-trinitrophenol (TNP) and chromate (CrO42-/Cr2O72-) anions with high selectivity and sensitivity in water via the luminescent quenching. The detection limits of 1 for TNP and CrO42-/Cr2O72- are 6.23 µM and 2.13 µM/2.87 µM. The mechanism of TNP luminescence quenching may be attributed to photoinduced electron transfer and resonance energy transfer, and CrO42-/Cr2O72- quenching involves resonance energy transfer and competitive absorption of light. Additionally, 1 has the great anti-interference ability and repeatability for detecting TNP and CrO42-/Cr2O72-, which can display the feasibility of this material as a stable luminescent probe in aqueous system.

8.
Materials (Basel) ; 13(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110858

RESUMO

To enhance the antibacterial activity of natural rubber latex foam (NRLF), chitin was added during the foaming process in amounts of 1-5 phr (per hundred rubber) to prepare an environmentally friendly antibacterial NRLF composite. In this research, NRLF was synthesized by the Dunlop method. The swelling, density, hardness, tensile strength, elongation at break, compressive strength and antibacterial activity of the NRLFs were characterized. FTIR and microscopy were used to evaluate the chemical composition and microstructure of the NRLFs. The mechanical properties and antibacterial activity of the NRLF composites were tested and compared with those of pure NRLF. The antibacterial activity was observed by the inhibition zone against E. coli. NRLF composite samples were embedded in a medium before solidification. The experimental results of the inhibition zone indicated that with increasing chitin content, the antibacterial activity of the NRLF composites increased. When the chitin content reached 5 phr, the NRLF composite formed a large and clear inhibition zone in the culture dish. Moreover, the NRLF-5 phr chitin composite improved the antibacterial activity to 281.3% of that of pure NRLF against E. coli.

9.
Molecules ; 24(11)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163647

RESUMO

Lepidium meyenii is now widely consumed as a functional food and medicinal product, which is known as an enhancer of reproductive health. However, the specific chemical composition and mechanism of action for improving sexual function are unclear. The present study aims at screening and determining the potential compounds, which promote mouse leydig cells (TM3) proliferation. The partial least squares analysis (PLS) was employed to reveal the correlation between common peaks of high performance liquid chromatography (HPLC) fingerprint of L. meyenii and the proliferation activity of TM3. The results suggested that three compounds had good activities on the proliferation of TM3 and promoting testosterone secretion, there were N-benzyl-hexadecanamide, N-benzyl-(9z,12z)-octadecadienamide and N-benzyl-(9z,12z,15z)-octadecatrienamide which might be the potential bioactive markers related to the enhancing sexual ability functions of L. meyenii. The first step in testosterone synthesis is the transport of cholesterol into the mitochondria, and the homeostasis of mitochondrial function is related to cyclophilin D (CypD). In order to expound how bioactive ingredients lead to promoting testosterone secretion, a molecular docking simulation was used for further illustration in the active sites and binding degree of the ligands on CypD. The results indicated there was a positive correlation between the binding energy absolute value and testosterone secretion activity. In addition, in this study it also provided the reference for a simple, quick method to screen the promoting leydig cell proliferation active components in traditional Chinese medicine (TCM).


Assuntos
Lepidium/química , Células Intersticiais do Testículo/citologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Análise dos Mínimos Quadrados , Células Intersticiais do Testículo/efeitos dos fármacos , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular , Análise Multivariada , Compostos Fitoquímicos/química , Testosterona/metabolismo
10.
Front Genet ; 9: 237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30023001

RESUMO

The analysis of large genomic data is hampered by issues such as a small number of observations and a large number of predictive variables (commonly known as "large P small N"), high dimensionality or highly correlated data structures. Machine learning methods are renowned for dealing with these problems. To date machine learning methods have been applied in Genome-Wide Association Studies for identification of candidate genes, epistasis detection, gene network pathway analyses and genomic prediction of phenotypic values. However, the utility of two machine learning methods, Gradient Boosting Machine (GBM) and Extreme Gradient Boosting Method (XgBoost), in identifying a subset of SNP makers for genomic prediction of breeding values has never been explored before. In this study, using 38,082 SNP markers and body weight phenotypes from 2,093 Brahman cattle (1,097 bulls as a discovery population and 996 cows as a validation population), we examined the efficiency of three machine learning methods, namely Random Forests (RF), GBM and XgBoost, in (a) the identification of top 400, 1,000, and 3,000 ranked SNPs; (b) using the subsets of SNPs to construct genomic relationship matrices (GRMs) for the estimation of genomic breeding values (GEBVs). For comparison purposes, we also calculated the GEBVs from (1) 400, 1,000, and 3,000 SNPs that were randomly selected and evenly spaced across the genome, and (2) from all the SNPs. We found that RF and especially GBM are efficient methods in identifying a subset of SNPs with direct links to candidate genes affecting the growth trait. In comparison to the estimate of prediction accuracy of GEBVs from using all SNPs (0.43), the 3,000 top SNPs identified by RF (0.42) and GBM (0.46) had similar values to those of the whole SNP panel. The performance of the subsets of SNPs from RF and GBM was substantially better than that of evenly spaced subsets across the genome (0.18-0.29). Of the three methods, RF and GBM consistently outperformed the XgBoost in genomic prediction accuracy.

11.
J Colloid Interface Sci ; 505: 130-138, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28577462

RESUMO

Ternary reduced graphene oxide nanosheets (rGSs)/Fe2O3/polypyrrole (PPy) hydrogels with Fe2O3 nanoparticles (NPs) embedded between rGSs and PPy layer were prepared in one-pot. The ternary hydrogels exhibited an interconnected and porous three-dimensional network with co-existence of macropores and mesopores. Fe2O3 NPs uniformly dispersed on rGS surface with the diameter of 8.8nm. Control experiments were carried out to investigate the roles of components in formation of ternary hydrogels. During heterogeneous Fenton degradation of methylene blue (MB) dyes, the ternary hydrogels exhibited much better removal efficiency than the reference samples, not only because rGSs and PPy layer altered the adsorption, dispersity and diameter of Fe2O3 NPs; but also owing to the structural merits of ternary hydrogels. The effects of operating conditions, such as initial MB concentrations, dosages of catalysts and H2O2, were carefully investigated. With the help of Fe2O3 NPs, ternary rGSs/Fe2O3/PPy hydrogels could be easily separated via a magnet. In recycling experiments, they showed superior reusability.

12.
J Colloid Interface Sci ; 491: 72-79, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012915

RESUMO

Metal nanoparticles (NPs) displayed overwhelming superiority in catalysis towards the corresponding bulk-phase materials; nevertheless, how to further improve catalytic activity was still an ongoing subject. Herein, we have combined one-step redox reaction and following freeze-dried technology to construct the quinary reduced graphene oxide nanosheets (rGS)/Fe2O3-PdPt/polypyrrole (PPy) hydrogels. Compared with traditional catalysts, their catalytic property was improved via two ways: construction of three-dimensional (3D) rGS hydrogels instead of two-dimensional rGS and synthesis of bimetallic alloys instead of monometallic NPs. The highly dispersed PdPt with diameter as small as 3.2nm uniformly loaded on hydrogel surface. Due to special interconnected and porous structure, the reactants were easily adsorbed in hydrogels and contacted with PdPt alloys. To explain the contributions of bimetallic alloys and 3D rGS structure on enhanced catalytic activity, the catalytic property of quinary hydrogels was compared with reference samples. Besides superior activity, they also displayed good reusability, since hydrogels could be magnetically recycled owing to the existence of Fe2O3 NPs.

13.
J Fluoresc ; 27(1): 281-286, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27785650

RESUMO

A supramolecular compound, (H4L)(4,4'-bpy)2 (1) (H4L = 1,2-bis(3,5-dicarboxyphenyl)diazene oxide, 4,4'-bpy = 4,4'-bipyridine) with 2D + 2D â†’ 2D 3-fold parallel interpenetrated layer feature, has been prepared which was investigated as selective sensing material for detection of nitroaromatic compounds (NACs) and metal ions, and exhibits significant fluorescence quenching toward NACs and high selectivity for detection of Fe3+ ion. The result indicates that 1 is a promising multi-functional fluorescence probe for detecting and recognizing NACs and metal ions with high sensitivity and selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...